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Abstract — Improving the energy efficiency of cloud computing 

systems has become an important issue because the electric 

energy bill for 24/7 operation of these systems can be quite large. 

The focus of this paper is on the virtual machine (VM) 

consolidation in a cloud computing system as a way of lowering 

daily energy consumption of the system. In contrast to the 

existing works that assume resource demands of VMs are known 

and given as scalar variables, this paper treats these demands as 

random variables with known means and standard deviations. 

These random variables may be correlated with one another, 

and there are several kinds of resources which can be 

performance bottlenecks. Therefore, both the correlation and 

multiple resource type should be considered. The VM 

consolidation problem is then formulated as a multi-capacity 

stochastic bin packing problem. This problem is NP-hard, so we 

propose a heuristic method to solve the problem efficiently. The 

simulation results show that, in spite of its simplicity and 

scalability, the proposed method produces high quality solutions. 

Keywords- Cloud computing; portfolio effect; multi-capacity 

bin packing; stochastic; virtual machine 

I.  INTRODUCTION 

Data center’s energy efficiency was not a major concern as 
of only a few years ago. However, the electric energy bill for 
operating a typical data center has been increasing rapidly as 
the size and utilization level of the data center increases; 
therefore, improving the energy efficiency has become a 
critically important issue.  

The cloud computing system considered here consists of 
one or more (federated) data centers. The data center itself is 
composed of a large number (say, tens of thousands) of 
heterogeneous server machines. Because each server machine 
consumes hundreds of Watts, the gross power consumption of 
these server machines plus the air conditioning units in a 
typical data center can easily exceed a few MW. For example, 
one of Facebook’s data centers in Prineville, Oregon has a 
capacity for 28MW of power [1]. The power capacity of very 
large data centers comes close to 100 MW of power, which is 
the same as the power consumed by 80,000 U.S. homes or 
250,000 E.U. homes [2]. With 10-12 cents per KWhr of 
electrical energy consumed, the electrical energy bill for even 
a mid-size data center (say with 10MW average power 
consumption) exceeds twenty thousand dollars per day. 
Because of this huge cost, there is a growing need for energy-

aware resource management strategies in data centers. 
Considering that a typical data center is under-utilized much of 
the time, the energy cost can be greatly reduced by 
consolidating service requests and/or running applications into 
as few servers as possible and shutting down the surplus 
servers. This technique is known as server consolidation. This 
consolidation enhances the energy efficiency of data centers 
because of the non-energy proportional characteristics of the 
real servers [3]. Note that in a virtualized cloud system, the 
key consolidation task is to pack the existing virtual machines 
(VM) into the minimum number of server machines. This 
server consolidation for a virtualized system is called VM 
consolidation. 

Much of the existing work proposes deterministic methods 
of consolidation, assuming that the resource demands  are 
known precisely and given as scalar values [4]. This 
assumption, however, is generally invalid. First, the estimated 
resource demands must represent actual demands during 
relatively long periods of time, which range from a few 
minutes to a few hours [5]. It is because the VM migration, 
which is an essential part of the consolidation, cannot be done 
too frequently due to the migration overhead; in fact, even the 
live migration, which is a very efficient migration method, 
causes service down for a few hundred milliseconds [5]. In 
practice, the actual demands vary during such a long period of 
time. If the VM resource demands are modeled as scalar 
values, then they must be set to very large values in order to 
account for the worst case. Clearly, this is unnecessary and 
wasteful. Second, some types of VM resource demands are 
very bursty with rates that vary greatly and rapidly over time; 
e.g., consider the problem of packing multiple connections 
together on a link when each connection is bursty [6]. In such 
a case, it has proven useful to rely on the notion of an effective 
bandwidth for bursty connections and to model this bandwidth 
as a random variable with expected mean and standard 
deviation (which are estimated by dynamic profiling of the 
connection). Therefore, it can be inappropriate to characterize 
the VM resource demands by fixed values. Instead, we suggest 
characterizing the demands by random variables (RV).  

There are prior studies which treat resource demands as 
random variables [7-11]; these works formulate the energy 
aware resource allocation problem as the stochastic bin 
packing (SBP) problem, which states that items with the sizes 
following a probabilistic distribution must be packed into bins 
such that the minimum number of bins are used, and the 
probability of violating any bin size is below a given threshold. 
Meng et al. [7], who focus on the network bandwidth as the 
resource in question, make a couple of assumptions: 1) items 
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(VMs with known  network bandwidth demands) are 
independent RVs following a normal distribution, 2) bins 
(physical machines, PM, with known network capacities) are 
identical. The authors subsequently present an algorithm to 
solve the SBP based on the notion of the equivalent size of an 
item, which in general depends on the other items packed 
together in the same bin. Similarly, Breitgand and Epstein [11] 
consider consolidating VMs on the minimum number of PM 
where the physical network (e.g., network interface link) may 
become the bottleneck.  In their formulation, each VM has a 
probabilistic guarantee (derived from its Service Level 
Agreement, SLA) on realizing its bandwidth requirements. The 
problem is again set up as SBP problem where each VM’s 
bandwidth demand is treated as an RV following a normal 
distribution. The authors also assume the RVs are independent 
of one another. On the other hand, Ming et al. and Xiaoqiao et 
al. do not assume neither the identical bin size nor the 
independency among RVs, but only one resource type (i.e., the 
CPU) is considered [8, 10].  

These assumptions, however, are generally invalid. First, 
VMs can be strongly correlated; therefore, their resource 
demands may be dependent on one another. For example, a 
web service request (such as a Google query) may 
simultaneously be served by a number of VMs (i.e., load 
balancing), resulting in correlation among the resource 
demands of these VMs. Second, it is important to consider 
multiple resource types (e.g., CPU, network bandwidth, disk 
space, and memory size) since any one of them may become 
the performance bottleneck. Third, a typical data center 
consists of heterogeneous PMs in general; hence, it is 
inappropriate to assume all PMs are identical (the same bin 
size). Without these invalid assumptions, we formulate the 
consolidation problem into a multi-capacity stochastic bin 
packing (MCSBP) problem

1
 and propose a heuristic method to 

solve the problem. This method is hierarchical and thus highly 
scalable. 

The remainder of the paper is organized as follows. In 
Section II, we introduce the resource demand model, the 
concept of portfolio effect, and the problem statement. The 
proposed algorithms and detailed explanations about them are 
presented in Section III. In Section IV, the simulation results 
are presented. Finally, in Section V, we summarize and 
conclude. 

II. RESOURCE DEMAND MODEL AND PROBLEM 

STATEMENT 

A. Resource demand model 

This study assumes that the VM’s resource demands are 
specified as RVs. The demands depend on the characteristics 
and computing needs of the applications running on the VMs. 
If the cumulative distribution function (cdf) of a RV is known, 
the minimum amount of resource allocation can be estimated 
from this cdf to meet a target quality of service (QoS).  This 
QoS may be specified as the probability that the aggregate 
resource demand of VMs in a PM does not exceed the PM’s 
resource capacity by more than 5% (this is referred to as 
having a 95% QoS). The cdf of RVs, however, is unknown in 
many cases. Without knowledge of the cdf, the minimum 

                                                           
1 Note the multi-capacity bin packing problem differs from the multi-

dimensional bin packing problem. Detailed comparison is shown in 

Section III.B. 

amount of resource allocation can be estimated by the 
Cantelli's inequality [12], which is the single-tailed variant of 
Chebyshev’s inequality. 
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According to the Cantelli’s inequality, the minimum amount 
of resource needed to meet the target QoS can be estimated as: 

 
X X

  ,  =4.4 for 95% QoS target (2) 

This inequality holds for any RVs regardless of their 
distribution, so it does not give a tight bound and may cause 
resource overbooking. If more information about the VM is 
given (e.g., cdf), we can assign less amount of resource while 
meeting the same QoS. For example, if a RV is known to be 
normally distributed, β can be set to as low as 1.7, which is 
much smaller than what the Cantelli’s inequality gives. 
According to the central limit theorem (CLT), the mean of a 
sufficiently large number of independent RVs, each with finite 
mean and variance, approximately follows normal distribution 
[12].  The CLT holds even for weakly dependent RVs; hence, 
we can use smaller β (i.e., a value of 1.7) if a RV is the sum of 
a large number of weakly dependent RVs. 

This study takes care of multiple resource types, e.g., the 
CPU, memory, network bandwidth, and so on. If the demand 
for each resource type is modeled as a RV, there are too many 
RVs, which make the problem complicated and hard to solve. 
One difficulty is that a correlation coefficient matrix becomes 
too big, which leads to large memory usage as well as longer 
running time to solve the problem. Instead, the workload 
intensity of a VM is modeled as a RV, and a resource demand 
is defined as a linear function of the RV   (3): 
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where    is a RV modeling the workload intensity of the     

VM (   ),   
  is the demand for the     resource type, and 

  
  and   

  are regression coefficients. This linear model is 
reasonable because there is a correlation between the workload 
intensity and the resource demands. If a resource type is very 
weakly correlated with the workload intensity, e.g., the 
memory, a relatively small value of   

  can be chosen for the 
resource.  

B. Portfolio effect 

The modern portfolio theory (MPT) is a financial theory, 
which attempts to maximize a portfolio’s expected return for a 
given amount of portfolio risk, or equivalently minimize the 
risk for a given level of expected return, by carefully choosing 
the proportions of various assets.  The MPT models an asset's 
return as a RV, and defines risk as the standard deviation of 
the return. The MPT models a portfolio as a weighted 
combination of assets, so that the return of the portfolio is the 
weighted combination of the assets' returns. By combining 
different assets whose returns are not perfectly positively 
correlated, the MPT seeks to reduce the total risk (variance of 
the portfolio return) [13]. 

The MPT reduces risk of portfolio through the portfolio 
effect, which may be stated as follow; the risk of a portfolio is 
always less than or equal to sum of each asset’s risk (4).  
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where   ∑     and     is a correlation coefficient between    

and    (        ). 



The degree of risk reduction is a function of a correlation 
coefficient (   )—the smaller     is, the lower the risk is (cf. 

Figure 1). In other words, one has to avoid from putting highly 
positively correlated assets into the same portfolio.  

As shown in (2), the minimum resource allocation is 
proportional to both mean and standard deviation; hence, 
reduction in the standard deviation also reduces the amount of 
resource allocation. The proposed method maximizes this 
portfolio effect to minimize the resource allocation, and 
consequentially energy cost decreases by utilizing fewer PMs. 

C. Problem statement – multi-capacity stochastic bin 

packing optimization problem 

Assume there are M PMs, N VMs, and K resource types. 
Each PM has a set of deterministic capacity limits for each 

resource type, and the limit is specified as   
  for the     

resource capacity of the     PM (   ). The ON/OFF state of 
    is captured by a pseudo-Boolean variable   . In addition, 
a non-deterministic workload intensity of     is specified as a 
   (a RV with known mean    and variance    

 )
2
. The 

demands by a VM for each type of resource are given as linear 
equations of the VM’s workload intensity (3). Let     denote a 

correlation coefficient between    and    . An assignment 

variable (   ) is 1 if a VMn is assigned to a PMm, and 0 
otherwise. We assume that each VM has a specified QoS to 
meet and that the QoS can be achieved by allocating enough 
amounts of resources to the VM. The minimum amounts for 

achieving the QoS are obtained from (2) with      and     .  

The minimum resource assignment (MRA) problem may 
be formulated as a multi-capacity stochastic bin packing 
(MCSBP) problem: 
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It is assumed that the following information is given: 

  ,   ,    ,   
 ,   

 ,    , and   
 . The objective is to assign VMs 

to PMs (    values – the optimization variable) so as to 

minimize the total amount of allocated resource while meeting 

a target QoS value for each VM. If all PMs are homogenous, 

the objective is simply to minimize the number of active PMs, 

i.e., ∑    . Note that active means the PM has been assigned 

at least one VM. This is similar to the objective function used 

in classical bin packing with identical bin size. However, in 

order to consider the heterogeneous PMs, we use a new 

objective function, which is to minimize the sum of total 

                                                           
2 More precisely, the mean and variance are supposed to be denoted by     

and    
 . However, for the sake of simplicity, the simpler notations are used. 

resource capacities of all active PMs (i.e.   ∑   ∑     
 

  ). 

Note that a new parameter    is introduced to normalize 

different resource types. The objective implies that resource 

capacity of a PM will be fully utilized as soon as the PM 

becomes active even if actual utilization is very small. It 

implicitly drives a solution to have as few active PMs as 

possible (i.e., consolidation). There is a couple of important 

constraints to be met: 1) every VM must be deployed on a PM. 

2) the aggregate resource demands of VMs in the same PM do 

not exceed resource capacity of the PM. This second constraint 

should hold in order to avoid performance degradation. 

 

Figure 1 Effect of correlations between RVs on a standard deviation 

This MCSBP problem is a variation of the bin packing (BP) 
problem, which is known to be NP-hard [12]. The MCSBP is 
also NP-hard.  

Theorem: The MCSBP problem is NP-hard.  
Proof: Consider a special case of the MCSBP problem; 

standard deviation of the workload intensity is zero, capacity 
of PMs (size of the bins) is constant, and only one type of 
resource is to be considered, that is: 

  if k = 1 1 if k = 1
0, , , 0
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For this special case, the MCSBP problem becomes a classical 
BP problem: 
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The BP problem, therefore, is reducible to the MCSBP. 

Because the BP problem is known to be NP-hard, the MCSBP 

is NP-hard too. □ 
The fact that MCSBP is NP-hard implies that it is very 

hard to find the optimal solution. A heuristic method, hence, is 
proposed to solve the problem.  

III. HIERARCHICAL RESOURCE MANAGEMENT SOLUTION 

In this section the main idea and algorithms for the 
hierarchical resource management solution is introduced. As 
depicted in Figure 2, the proposed solution consists of two 
distinct resource managers: the global and local managers. 
The global manager assigns VMs to a cluster first, and then 
the local manager deploys the VMs to PMs in the cluster.   

Modern data centers consist of many clusters (Figure 2), 
and the number of PMs in one cluster is bounded because the 
cluster’s resource capacity (e.g., power supply and network 
bandwidth) is limited. Therefore, a larger data center has more 
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clusters, but typically not bigger clusters. The key advantage 
of the proposed solution is that it splits a large problem into a 
number of small problems independent of one another. 
Because of its small size and independent characteristic, there 
is an opportunity to apply more sophisticated and elaborate 
solution approaches, which is not possible for the original (flat) 
problem because of its very large size.  

Data center
(Cloud computing system)

Cluster Cluster Cluster

Lo
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l
G

lo
b

alPortfolio effect
maximization

Balanced resource 
allocation

 

Figure 2 A typical cloud computing system and hierarchcial resource 

management  

While a hierarchical approach is scalable, the quality of 
result from it may be much worse than a flat (non-hierarchical) 
method. If the original problem is not well divided into sub 
problems, the quality of the result may be very bad and 
unacceptable. The global manager, therefore, is required to be 
designed carefully. Likewise, the local manager should be 
designed well to ensure a high quality for the result. 

The approach of the global manager is quite different from 
that of the local manager. The global manager maximizes the 
portfolio effect, i.e., least correlated VMs are deployed on the 
same cluster. On the other hand, the local manager makes the 
balanced usage of resource types within a PM. More detailed 
explanation of the managers is provided in the following 
section. 

A. Global Resource Manager 

The global resource manager assigns VMs to clusters. For 
better quality of the overall result, the proper objective should 
be chosen. Our objective is to minimize the total resource 
usage of clusters (8). The resource usage is simply defined as 
the sum of resource allocation of each type. Note that total 
mean is always the same regardless of VM deployment 
methods. On the other hand, the standard deviation is not, that 
is, it can be decreased using a well-designed method. In this 
paper, the cost is introduced and defined as the sum of the 

standard deviations ( ∑ ∑   
  

   
 
   ). The objective is to 

minimize this cost. Intuitively, this objective leads to the 
followings: first, the least correlated VMs are assigned to the 
same cluster, and the gross amount of resource allocation is 
minimized. Second, the local manager could assume VMs are 
uncorrelated, which makes the solution simpler and faster.  
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 ) 
   .    =1 if     is deployed on     

cluster and 0 otherwise. 
Some VMs may be correlated with one another. For 

example, multiple VMs may be spawned off by the same 
application or VMs may correspond to different tiers of a 
multi-tiered application, etc. We can imagine two distinctive 
situations: all VMs are uncorrelated or some VMs are 
correlated with one another. Because the uncorrelated case is 

simpler, we analyze and solve this case first in order to get 
some useful intuitions. After that we extend the algorithm for 
the other situation (correlated). 

The key idea in the algorithm is based on the following 
proposition [14]: 

Proposition: Suppose we have N items and C bins. Size of 

all items is 1 (constant) and cost of each item is    (n = 1, 2, 

… , N). The size of the     bin is    (integer) and total size of 

all bins is the same as the number of items (∑   
 
     ). The 

items are sorted in non-increasing order of their costs (      
for    ). The bins are also sorted in non-increasing order of 
their sizes    (      for    ). Set    is the set of items put 

into the     bin. The overall cost is defined as: 

 overall cost:=
2

1 c

C

nc n S


    (9) 

The cost is minimized if the bigger bin contains the items with 
greater cost(10). 
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The proof of the proposition is shown in [14].  Note that 
the proposition is not perfectly fit our problem because it 
assumes that the size of items is constant. The proposition, 
hence, cannot be used without modifications. The modification 
is made based on a simple intuition as follows; assume that an 
item is already in a bin and the item will be replaced by other 
items with smaller size. For the sake of simplicity, the 
substitutes are assumed to be identical (i.e., their size and cost 
are all the same). With the further assumption that the ratio of 
the original item’s size to the substitutes’ size is integer, we 
can show that the substitution decreases the overall cost (9) if 
the following inequality holds:   
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Hence, the cost of     is redefined (12), and the proposed 
algorithm assigns VMs to clusters based on this cost. 
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The pseudo code of a VM-to-cluster algorithm (VM2C, 
preliminary version) is shown below. Its main structure is 
similar to the First Fit Decreasing (FFD) heuristic [15].  
 

VM-to-cluster Algorithm (VM2C): uncorrelated 

Inputs:        
 ,    ,    ,   

  ,   
  , and       

Output:        
1:  sort clusters C  by its size (∑   

  
   ) in non-increasing order 

2:  sort VMs by its cost (12) in non-increasing order     
3:  for each cluster C do 
4:      for each unassigned VM do 
5:             = 1           // assign     to cluster C 
6:                     

     
  (8) 

7:        if              
         then       

8:                  = 0       // cancel the assignment  
9:        end if 
10:     end for 
11:  end for 

Figure 3 VM-to-cluster Algorithm for uncorrelated case 

As shown in Figure 3, we sort clusters and VMs in non-
increasing order (lines 1 and 2) by cluster’s size and VM’s 
cost respectively. The size of a cluster is calculated by 



aggregating the total amount of resource types of all PMs in 
the cluster. For each cluster, the algorithm pre-assigns the VM 
(lines 4 and 5) with largest cost (12) among all unassigned 
VMs. It calculates the total amount of resource that the cluster 
is supposed to provide (line 6). If it is greater than the capacity 
of the cluster, the assignment is canceled (line 7 and 8). The 
above steps are repeated until either all VMs are assigned or 
all clusters are full.  

The above algorithm is required to be extended to support 
the correlated cases. Dealing with the correlated case requires 
very high amount of computing resources because the 
complexity of correlation calculation is square of the number 
of VMs. Finding the optimal solution takes huge amount of 
time and it may not be practical. Hence, we present a heuristic 
approach to solve the problem. 

The main idea in the heuristic is that a VM is assigned to a 
cluster one at a time and the best VM is selected in a greedy 
manner. Suppose that N VMs are already in a cluster and 
another VM is going to be assigned to the cluster. The new 
variance of the cluster becomes: 

 
    

    

2

' 1 1

2

1 1 1 11
    +2

N Nk k k

c ic jc ij i i j ji j

N k k k

ic nN n n N N N Nn
g a a a

g g a a

   

  
 

   





 
 (13) 

The increase in variance (      
 ) is shown in (14). The 

overhead is defined as the ratio of the amount of increase to 
the total resource demands of       (15). 
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The final version of the VM2C algorithm (Figure 4) is 
nearly identical to the preliminary version (Figure 3) except 
for a few lines (lines 5 through 7). The algorithm considers the 
first W (it is called ‘window size’) VMs as candidates for 
allocation, and choose one of which overhead (15) is smallest 
among the candidates.  
 

VM-to-cluster Algorithm (VM2C): correlated 

Inputs:        
 ,    ,    ,   

  ,   
  , and       

Output:        
1:  sort clusters C  by its size (∑   

  
   ) in non-increasing order 

2:  sort VMs by its cost (12) in non-increasing order     
3:  for each cluster C do 
4:      while true then 
5:           for the first W unassigned VMs do 
6:                find a VM of which overhead (15) is smallest  
7:           end for 
8:               = 1           // assign     to cluster C 
9:                      

     
  (8) 

10:          if              
         then       

11:                   = 0       // cancel the assignment  
12:               break         // break while loop 
13:          end if 
14:     end while 
15:  end for 

Figure 4 VM-to-cluster Algorithm (final version) 

It is important to choose a proper window size (W) for 
better results; Bigger W may produces higher quality of result, 
but at the same time, increases the execution time of the 

algorithm. It is not simple to find the best W; this topic will be 
discussed at Section IV. 

B. Local Resource Manager 

The local resource manager deploys VMs, which are 
assigned to a cluster by the global manager, on PMs in the 
cluster. The problem of local level is identical to the original 
one (5) except for the problem size; its size is much smaller 
than that of the original problem. The local–level problem is 
also NP-hard, so we propose a heuristic algorithm. 

As mentioned before, the problem can be formulated into 
the MCSBP problem. Note that a multi-capacity bin packing 
(MCBP) problem is different from a classical multi-
dimensional bin packing (MDBP) problem; the difference is 
depicted in Figure 5. In this example, each bin and item has a 
pair of capacity (horizontal and vertical) information. In a 
MDBP problem, an item can be put into a bin if there is 
enough geometric space for the item. The MCBP problem, 
however, differs from the MDBP problem; once an item 
deployed on a bin, the corresponding capacity is dedicated to 
the item and not available to other items.  

Item1

Item3

Item5

Item1

Item3

Item5

Item2

Item4

Item7

 

(a) multi-dimensional bin packing (b) multi-capacity bin packing 

Figure 5 Multi-dimensional vs. multi-capacity bin packing  

Nilabja et al. propose several heuristics for solving the 
MCBP[16]. The heuristics are very efficient but the quality of 
results is less than satisfactory. William et al. propose 
permutation pack (PP) and choose pack (CP) heuristics [17]. 
The quality of results from the PP is quite good but its 
complexity increases exponentially as the number of resource 
types grows. CP is simpler than the PP but the quality of 
output is worse. In this paper we present a heuristic algorithm, 
which is better than PP in terms of both the quality of results 
and algorithm’s running time.  

The key idea in the proposed algorithm is to achieve 
balanced resource allocation: deploy a VM to a PM where 
amount of available resources is most ‘similar’ to that of the 
VM. A detailed explanation of ‘similarity metric’ is presented 
below. First, two resource vectors are defined (16):  ⃗  and  ⃗ . 
 ⃗  is a resource demand vector of     and  ⃗  is an available 
resource vector of    . 

  ⃗   (           ) ,  ⃗   (           ) (16) 

where      
  
 
   

     
   , and    is the amount of 

available resource of a     . The difference between the PM 
and VM is defined as the distance of two unit-sized vectors 
(17). The algorithm selects the PM with the minimum 
difference, which means the PM is most ‘similar’ to the VM. 
The basic structure of the VM-to-PM algorithm (VM2PM) is 
similar to the best fit decreasing (BFD) algorithm. For us, best 
means the smallest difference (17). 

                 ‖
  ⃗⃗ ⃗⃗⃗

‖  ⃗⃗ ⃗⃗⃗‖
 

  ⃗⃗ ⃗⃗ ⃗⃗ ⃗

‖  ⃗⃗ ⃗⃗ ⃗⃗ ⃗‖
‖  (17) 

There may be no feasible solution at the local level. If the 
local manager cannot deploy some VMs, it gives the list of 
those VMs to the global manager. The global manager assigns 



these VMs to other clusters. These steps are repeated until 
either all VMs are assigned or all clusters are full. 

C. Flat VM Allocation Algorithm 

A hierarchical solution is generally scalable, but the quality 
of result may be worse than that of a flat solution. For the 
purpose of comparison, we develop a flat version of VM 
allocation algorithm, which conceptually merges VM2C 
(global) and VM2PM (local) algorithms. First, find    
candidate VMs of which difference is smallest (line 4). Among 
the candidates, choose the    VMs with the least cost (12) 
(line 5 and 6). Finally, pick the VM with the smallest overhead 
(15) among the    VMs, and deploy the VM to the PM.  
 

Flat VM Allocation Algorithm (FLAT) 

Inputs:        
 ,    ,    ,   

  ,   
  , and       

Output:        

1:  sort PM by its size (∑   
  

   ) in non-increasing order 
2:  for each PM do 
3:      do while the PM is not fully assigned 
4:           find    candidate VMs with smallest difference (17) 
5:          sort the VMs by its cost (12) in non-increasing order     
6:          for the first    candidate VMs do 
7:               find a VM of which overhead (15) is smallest 
8:          end for   
9:              = 1           // assign     to     
10:          if      is full (cannot meet QoS) 
11:                   = 1       // cancel the assignment        
12:               break         // break while loop 
13:          end if 
14:  end for 

Figure 6 Flat VM allocation algorithm 

IV. SIMULATION RESULTS 

A. Simulation setup 

For the simulation we needed the following data:  
1) capacity of PMs, 2) list of PMs in clusters, 3) resource 
demands of VMs, and 4) the correlation coefficients among 
VMs. The data is randomly generated based on the following 
information: 

 Number of VMs (N), PMs (M), and clusters (C) 

 Workload intensity of VMs: upper and lower bounds of    
and     

 Scale factors of resource: upper and lower bounds of   
  and 

  
  (the same bounds are applied to all VMs)  

 Capacity of PMs: upper and lower bounds of   
  (the same 

bounds for all PMs) 

 Dimension of resource (K): the number of resource types 

It is also randomly decided which PMs are placed in which 
clusters (topology). Because VMs are heterogeneous, 
workload intensity is randomly generated using the given 
bounds. Likewise, the scale factors and PM capacity are 
randomly generated.  

Making a valid correlation coefficient matrix [   ]  is 

important, so we use the hypersphere decomposition [18] 
method, which is a relatively simple method for generating a 
valid correlation matrix.  

B. Global Resource Manager 

The objective of the global resource manager is to 
minimize the sum of standard deviations of clusters (8), which 
will be called cost in this section; lower cost means better 
quality of the solution.  

To assess the quality of solutions generated by the 
proposed algorithms, our solution is compared with some 
other well-known methods: 
 SA – use a simulated annealing algorithm [19]. It does not 

guarantee to find the global optimal point, but it finds a near-
optimal. This method may generate different solutions each time, 
so we run the SA six times and pick the ‘best’ result. SA takes 
very long time to find a solution and it is not practical, but it can 
be a good indicator of determining the quality of other 
algorithms. 

 random – assign randomly. If a solution is worse than random, 
it implies the quality of the solution is quite poor. We run 
random algorithm ten times and report the ‘average’ of these 
runs. 

 FFD – use First Fit Decreasing algorithm, which is a well-
known and commonly used heuristic to solve the bin packing 
problem. It treats the problem as a single capacity bin packing 
problem by assuming there is only one type of resource; it uses 
an aggregate amount of all kinds of resource.  

 PM2C – use the PM-to-cluster algorithm (c.f. Figure 4) 

We first investigate the quality of the algorithms by 
comparing them with the SA that produces the near optimal 
solution. Normalized cost of the algorithms is shown in Figure 
7. For a fair comparison, we generate eight different test cases 
based on the same setup and run simulations. Note that even 
with the same setup, the results can be different because the 
data is randomly generated in each case (c.f. Section IV-A).  

As depicted in Figure 7–a, PM2C produces the best result, 
which is even better than SA. The cost of random is biggest as 
expected. FFD is better than random but its cost is around 30% 
greater than PM2C. The same trend is observed for K=7 
(Figure 7–b).  

 
Figure 7 Quality comparison among the algorithms (N=500, W=50) 

The cost of result and running time from four different N 
values are presented in Figure 8. The original data has 2000 
VMs in it and the other three data are made from the original 
one by random sampling. The same trend is observed in both 
cost and running time for four N values: 1) the rate of 
reduction in the cost decreases as W increase. 2) running time 
is linearly increasing as W increase. Note that the slope of 
smallest N (=500) is most steep, which is because growth in 
running time is relatively bigger compared to the running time 
itself. 
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Figure 8 Cost and algorithm running time vs. window size (W) 

As mentioned before, choosing the proper window size (W) 
of PM2C is quite important. Unnecessarily large W is not 
acceptable due to very long running time. It is hard to find the 
optimal window size from an analytical way. Instead, we 
propose a simple way to find the proper window size; as 
shown in Figure 8, relationship between cost and window size 
is very similar among the four cases. First, make a smaller 
problem by randomly select VMs and PMs from the original 
problem (random sampling). Next, run PM2C multiple times 
with different W and find the best W. As shown in Figure 9, 
running time is deeply dependent on the problem size (N), so 
investigation of smaller problem can find a proper window 
size in a shorter time. 

 

Figure 9  Running time vs. W for different problem size (N) 

C. Local Resource Manager 

The local resource manager deploys VMs to PMs. In order 
to assess the quality of results from the proposed algorithm, it 
is compared with the below heuristics: 
 Permutation Pack (PP) [17] – for each bin, find an item whose 

ordering of the resource demands best matches the ordering of 
residual resources in the bin. This algorithm only considers ‘w’ 
resource types which are mostly important, and the window size 
(w) is the same as dimension of resource (K) unless it is 

specified. The complexity of PP is  (
    

(   ) 
), and this increases 

rapidly as resource dimension (K) increases.  

 FFD – use First Fit Decreasing algorithm. It is the same as the 
FFD presented in Section IV-B. 

 VM2PM – use the VM-to-PM algorithm (VM2PM).  

The VM2PM generates the best quality of result (c.f. 
Figure 10). PP is the second best and both       and FFD are 
the worst. FFD is a simple algorithm and its running time is 
smallest. Running time of PP exponentially increases as 
resource dimension increases. Figure 10 implies that PP is not 
applicable when K is greater than 8 because of huge running 
time. On the other hand, the proposed algorithm, VM2PM, 

could be used even if K is pretty large. Note that       is 
supposed to be simpler than PP because it considers the order 
of three biggest resources only, but the running time of       
is larger than that of PP when K is less than four. It is caused 
by a way of implementation; the algorithm makes a list for 
comparison of the order, and revises the list only when 
window size (w) is specified. Because of this additional 
computation, the running time of       is greater than PP for 
K < 4. 

 

Figure 10  Cost and running time vs. dimension of resource (K) 

D. Overall performance comparisons 

We have shown that the proposed algorithms are simple 
and work well for both global and local resource allocations. 
However, the high quality of each level does not necessarily 
guarantee the high quality of the overall solution. In this 
section, we will compare the quality of the final solution 
generated by different algorithms and verify that the proposed 
algorithms produce high quality solutions. In addition to this, 
we run the simulation for a large number of VMs, and show if 
the proposed scheme is scalable or not. In this section the 
results of below heuristics are presented: 
 FINAL – use the proposed hierarchical algorithms: VM2C and 

VM2PM algorithms. 

 PP – use permutation pack algorithm. It is non-hierarchical 
method. 

 FFD – use First Fit Decreasing algorithm. It is the same as the 
FFD presented in Section IV-B. It is non-hierarchical. 

 FLAT – use the flat VM assignment algorithm (Figure 6). W2 is 
equal to W of FINAL and W1 =5W2 

For the simulation K is set to 7; if K is greater than 7 
running time of PP become very large (Figure 10) even for 
small N. Comparison among the algorithms with different 
numbers of VMs (N) is reported in Figure 11. It is seen that 
costs of FFD and       are much larger than those of all the 
others. For the all cases FLAT produces the best results. PP 
and FLAT produce similar quality of results. The difference in 
cost between FLAT and FINAL is less than 4%; which implies 
the quality of FINAL’s result is quite similar to that of FLAT. 

The scalability is the one of the most important features of 
the resource management solution for the cloud computing. 
Hence, the relationship between running time of the 
algorithms and problem size is very important. The running 
time of the proposed algorithm is calculated as follow: 

  max( )running time global localT T T   (18) 

where         and        are running time of the global 

resource manager and local resource managers, respectively. 
The local managers run in parallel; therefore, the longest 
execution time among them is considered for the calculation.  
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Figure 11  Quality comparison among the algorithms 

The running time comparison among the algorithms is 
shown in Figure 12. Both PP and FLAT run for a very long 
time to find a solution for the large number of VMs because 
they are non-hierarchical methods which are not scalable in 
general. Because of their large running time, both PP and 
FLAT may not applicable to the large-sized problems. On 
the other hand, the running time of all other heuristics is 
acceptable. Note that the increase rate in running time of 
FINAL is smallest among the algorithms; this is one of the 
key benefits from a hierarchical method. The quality of the 
FFD’s result is too low as shown in Figure 11 (20% greater 
than FLAT), so FFD is not acceptable either. For the same 
reason,       is not a good solution. Hence, FINAL is the 
best method among these algorithms and its cost is around 
15% less than FFD and      . 

 

 
Figure 12  Running time comparison among the algorithms 

V. CONCLUSIONS 

With increasing energy cost of cloud computing systems, 
necessity of energy aware resource management techniques 
has been growing. This paper proposed a hierarchical 
resource management solution which produces high quality 
solutions and is scalable for a number of resource types as 
well as a number of VMs. The resource demands are 
modeled as random variables and correlation among these 
RVs are considered. The proposed solution outperforms a 
well-known heuristic algorithm; it achieves around 15% cost 
reduction compared to FFD with acceptable running time. 
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