
Hierarchical Virtual Machine Consolidation in a Cloud

Computing System

Inkwon Hwang and Massoud Pedram

University of Southern California

Los Angeles, CA, USA

{inkwonhw, pedram}@usc.edu

Abstract — Improving the energy efficiency of cloud computing

systems has become an important issue because the electric

energy bill for 24/7 operation of these systems can be quite large.

The focus of this paper is on the virtual machine (VM)

consolidation in a cloud computing system as a way of lowering

daily energy consumption of the system. In contrast to the

existing works that assume resource demands of VMs are known

and given as scalar variables, this paper treats these demands as

random variables with known means and standard deviations.

These random variables may be correlated with one another,

and there are several kinds of resources which can be

performance bottlenecks. Therefore, both the correlation and

multiple resource type should be considered. The VM

consolidation problem is then formulated as a multi-capacity

stochastic bin packing problem. This problem is NP-hard, so we

propose a heuristic method to solve the problem efficiently. The

simulation results show that, in spite of its simplicity and

scalability, the proposed method produces high quality solutions.

Keywords- Cloud computing; portfolio effect; multi-capacity

bin packing; stochastic; virtual machine

I. INTRODUCTION

Data center’s energy efficiency was not a major concern as
of only a few years ago. However, the electric energy bill for
operating a typical data center has been increasing rapidly as
the size and utilization level of the data center increases;
therefore, improving the energy efficiency has become a
critically important issue.

The cloud computing system considered here consists of
one or more (federated) data centers. The data center itself is
composed of a large number (say, tens of thousands) of
heterogeneous server machines. Because each server machine
consumes hundreds of Watts, the gross power consumption of
these server machines plus the air conditioning units in a
typical data center can easily exceed a few MW. For example,
one of Facebook’s data centers in Prineville, Oregon has a
capacity for 28MW of power [1]. The power capacity of very
large data centers comes close to 100 MW of power, which is
the same as the power consumed by 80,000 U.S. homes or
250,000 E.U. homes [2]. With 10-12 cents per KWhr of
electrical energy consumed, the electrical energy bill for even
a mid-size data center (say with 10MW average power
consumption) exceeds twenty thousand dollars per day.
Because of this huge cost, there is a growing need for energy-

aware resource management strategies in data centers.
Considering that a typical data center is under-utilized much of
the time, the energy cost can be greatly reduced by
consolidating service requests and/or running applications into
as few servers as possible and shutting down the surplus
servers. This technique is known as server consolidation. This
consolidation enhances the energy efficiency of data centers
because of the non-energy proportional characteristics of the
real servers [3]. Note that in a virtualized cloud system, the
key consolidation task is to pack the existing virtual machines
(VM) into the minimum number of server machines. This
server consolidation for a virtualized system is called VM
consolidation.

Much of the existing work proposes deterministic methods
of consolidation, assuming that the resource demands are
known precisely and given as scalar values [4]. This
assumption, however, is generally invalid. First, the estimated
resource demands must represent actual demands during
relatively long periods of time, which range from a few
minutes to a few hours [5]. It is because the VM migration,
which is an essential part of the consolidation, cannot be done
too frequently due to the migration overhead; in fact, even the
live migration, which is a very efficient migration method,
causes service down for a few hundred milliseconds [5]. In
practice, the actual demands vary during such a long period of
time. If the VM resource demands are modeled as scalar
values, then they must be set to very large values in order to
account for the worst case. Clearly, this is unnecessary and
wasteful. Second, some types of VM resource demands are
very bursty with rates that vary greatly and rapidly over time;
e.g., consider the problem of packing multiple connections
together on a link when each connection is bursty [6]. In such
a case, it has proven useful to rely on the notion of an effective
bandwidth for bursty connections and to model this bandwidth
as a random variable with expected mean and standard
deviation (which are estimated by dynamic profiling of the
connection). Therefore, it can be inappropriate to characterize
the VM resource demands by fixed values. Instead, we suggest
characterizing the demands by random variables (RV).

There are prior studies which treat resource demands as
random variables [7-11]; these works formulate the energy
aware resource allocation problem as the stochastic bin
packing (SBP) problem, which states that items with the sizes
following a probabilistic distribution must be packed into bins
such that the minimum number of bins are used, and the
probability of violating any bin size is below a given threshold.
Meng et al. [7], who focus on the network bandwidth as the
resource in question, make a couple of assumptions: 1) items

This research is sponsored in part by a grant from the Semiconductor

Research Corporation (No. 2012-HJ-2292).

(VMs with known network bandwidth demands) are
independent RVs following a normal distribution, 2) bins
(physical machines, PM, with known network capacities) are
identical. The authors subsequently present an algorithm to
solve the SBP based on the notion of the equivalent size of an
item, which in general depends on the other items packed
together in the same bin. Similarly, Breitgand and Epstein [11]
consider consolidating VMs on the minimum number of PM
where the physical network (e.g., network interface link) may
become the bottleneck. In their formulation, each VM has a
probabilistic guarantee (derived from its Service Level
Agreement, SLA) on realizing its bandwidth requirements. The
problem is again set up as SBP problem where each VM’s
bandwidth demand is treated as an RV following a normal
distribution. The authors also assume the RVs are independent
of one another. On the other hand, Ming et al. and Xiaoqiao et
al. do not assume neither the identical bin size nor the
independency among RVs, but only one resource type (i.e., the
CPU) is considered [8, 10].

These assumptions, however, are generally invalid. First,
VMs can be strongly correlated; therefore, their resource
demands may be dependent on one another. For example, a
web service request (such as a Google query) may
simultaneously be served by a number of VMs (i.e., load
balancing), resulting in correlation among the resource
demands of these VMs. Second, it is important to consider
multiple resource types (e.g., CPU, network bandwidth, disk
space, and memory size) since any one of them may become
the performance bottleneck. Third, a typical data center
consists of heterogeneous PMs in general; hence, it is
inappropriate to assume all PMs are identical (the same bin
size). Without these invalid assumptions, we formulate the
consolidation problem into a multi-capacity stochastic bin
packing (MCSBP) problem

1
 and propose a heuristic method to

solve the problem. This method is hierarchical and thus highly
scalable.

The remainder of the paper is organized as follows. In
Section II, we introduce the resource demand model, the
concept of portfolio effect, and the problem statement. The
proposed algorithms and detailed explanations about them are
presented in Section III. In Section IV, the simulation results
are presented. Finally, in Section V, we summarize and
conclude.

II. RESOURCE DEMAND MODEL AND PROBLEM

STATEMENT

A. Resource demand model

This study assumes that the VM’s resource demands are
specified as RVs. The demands depend on the characteristics
and computing needs of the applications running on the VMs.
If the cumulative distribution function (cdf) of a RV is known,
the minimum amount of resource allocation can be estimated
from this cdf to meet a target quality of service (QoS). This
QoS may be specified as the probability that the aggregate
resource demand of VMs in a PM does not exceed the PM’s
resource capacity by more than 5% (this is referred to as
having a 95% QoS). The cdf of RVs, however, is unknown in
many cases. Without knowledge of the cdf, the minimum

1 Note the multi-capacity bin packing problem differs from the multi-

dimensional bin packing problem. Detailed comparison is shown in

Section III.B.

amount of resource allocation can be estimated by the
Cantelli's inequality [12], which is the single-tailed variant of
Chebyshev’s inequality.

  
2

1

1
X X

P X  


  


, 0  (1)

According to the Cantelli’s inequality, the minimum amount
of resource needed to meet the target QoS can be estimated as:

X X

  ,  =4.4 for 95% QoS target (2)

This inequality holds for any RVs regardless of their
distribution, so it does not give a tight bound and may cause
resource overbooking. If more information about the VM is
given (e.g., cdf), we can assign less amount of resource while
meeting the same QoS. For example, if a RV is known to be
normally distributed, β can be set to as low as 1.7, which is
much smaller than what the Cantelli’s inequality gives.
According to the central limit theorem (CLT), the mean of a
sufficiently large number of independent RVs, each with finite
mean and variance, approximately follows normal distribution
[12]. The CLT holds even for weakly dependent RVs; hence,
we can use smaller β (i.e., a value of 1.7) if a RV is the sum of
a large number of weakly dependent RVs.

This study takes care of multiple resource types, e.g., the
CPU, memory, network bandwidth, and so on. If the demand
for each resource type is modeled as a RV, there are too many
RVs, which make the problem complicated and hard to solve.
One difficulty is that a correlation coefficient matrix becomes
too big, which leads to large memory usage as well as longer
running time to solve the problem. Instead, the workload
intensity of a VM is modeled as a RV, and a resource demand
is defined as a linear function of the RV (3):

1 1 1

n n n nR a X b  , … ,
k k k

n n n nR a X b  (3)

where is a RV modeling the workload intensity of the

VM (),
 is the demand for the resource type, and

 and

 are regression coefficients. This linear model is
reasonable because there is a correlation between the workload
intensity and the resource demands. If a resource type is very
weakly correlated with the workload intensity, e.g., the
memory, a relatively small value of

 can be chosen for the
resource.

B. Portfolio effect

The modern portfolio theory (MPT) is a financial theory,
which attempts to maximize a portfolio’s expected return for a
given amount of portfolio risk, or equivalently minimize the
risk for a given level of expected return, by carefully choosing
the proportions of various assets. The MPT models an asset's
return as a RV, and defines risk as the standard deviation of
the return. The MPT models a portfolio as a weighted
combination of assets, so that the return of the portfolio is the
weighted combination of the assets' returns. By combining
different assets whose returns are not perfectly positively
correlated, the MPT seeks to reduce the total risk (variance of
the portfolio return) [13].

The MPT reduces risk of portfolio through the portfolio
effect, which may be stated as follow; the risk of a portfolio is
always less than or equal to sum of each asset’s risk (4).

  
22

, Y X ji i iYi i j iij            (4)

where ∑ and is a correlation coefficient between

and ().

The degree of risk reduction is a function of a correlation
coefficient ()—the smaller is, the lower the risk is (cf.

Figure 1). In other words, one has to avoid from putting highly
positively correlated assets into the same portfolio.

As shown in (2), the minimum resource allocation is
proportional to both mean and standard deviation; hence,
reduction in the standard deviation also reduces the amount of
resource allocation. The proposed method maximizes this
portfolio effect to minimize the resource allocation, and
consequentially energy cost decreases by utilizing fewer PMs.

C. Problem statement – multi-capacity stochastic bin

packing optimization problem

Assume there are M PMs, N VMs, and K resource types.
Each PM has a set of deterministic capacity limits for each

resource type, and the limit is specified as
 for the

resource capacity of the PM (). The ON/OFF state of
 is captured by a pseudo-Boolean variable . In addition,
a non-deterministic workload intensity of is specified as a
 (a RV with known mean and variance

)
2
. The

demands by a VM for each type of resource are given as linear
equations of the VM’s workload intensity (3). Let denote a

correlation coefficient between and . An assignment

variable () is 1 if a VMn is assigned to a PMm, and 0
otherwise. We assume that each VM has a specified QoS to
meet and that the QoS can be achieved by allocating enough
amounts of resources to the VM. The minimum amounts for

achieving the QoS are obtained from (2) with and .

The minimum resource assignment (MRA) problem may
be formulated as a multi-capacity stochastic bin packing
(MCSBP) problem:

  

 

1

1

1 1

1

1

{0,1} {1, ... , }, {1, ... , }

{0,1} {1, ... , }

1 {1, ... , }

{1, ... , }

min

..

k

k mk

nm

m

M

nmm

N

m nmn

N Nk k k

m im jm ij i i j ji j

N k k k k

nm n n n m mn

m mm

mq w r

e m M n N

f m M

e n N

f N e m M

VAR e e a a

e a b VAR r

m

f q

s t

  

 





 





    

  

  

  



  









 





{1, ... , }, {1, ... , }M k K  















 (5)

It is assumed that the following information is given:

 , , ,
 ,

 , , and
 . The objective is to assign VMs

to PMs (values – the optimization variable) so as to

minimize the total amount of allocated resource while meeting

a target QoS value for each VM. If all PMs are homogenous,

the objective is simply to minimize the number of active PMs,

i.e., ∑ . Note that active means the PM has been assigned

at least one VM. This is similar to the objective function used

in classical bin packing with identical bin size. However, in

order to consider the heterogeneous PMs, we use a new

objective function, which is to minimize the sum of total

2 More precisely, the mean and variance are supposed to be denoted by

and
 . However, for the sake of simplicity, the simpler notations are used.

resource capacities of all active PMs (i.e. ∑ ∑

).

Note that a new parameter is introduced to normalize

different resource types. The objective implies that resource

capacity of a PM will be fully utilized as soon as the PM

becomes active even if actual utilization is very small. It

implicitly drives a solution to have as few active PMs as

possible (i.e., consolidation). There is a couple of important

constraints to be met: 1) every VM must be deployed on a PM.

2) the aggregate resource demands of VMs in the same PM do

not exceed resource capacity of the PM. This second constraint

should hold in order to avoid performance degradation.

Figure 1 Effect of correlations between RVs on a standard deviation

This MCSBP problem is a variation of the bin packing (BP)
problem, which is known to be NP-hard [12]. The MCSBP is
also NP-hard.

Theorem: The MCSBP problem is NP-hard.
Proof: Consider a special case of the MCSBP problem;

standard deviation of the workload intensity is zero, capacity
of PMs (size of the bins) is constant, and only one type of
resource is to be considered, that is:

  if k = 1 1 if k = 1
0, , , 0

0 otherwise 0 otherwise

k k k

n m n n

R
r a b     (6)

For this special case, the MCSBP problem becomes a classical
BP problem:

1

1

1

1

{0,1} {1, ... , }, {1, ... , }

{0,1} {1, ... , }

1 {1, ... , }

{1, ... , }

{1, ... , }, {1, ... , }

min

..

nm

m

M

nmm

N

m nmn

N

nm nn

mm

e m M n N

f m M

e n N

f N e m M

e R m M k K

f

s t











    

  

  

  

    



















 (7)

The BP problem, therefore, is reducible to the MCSBP.

Because the BP problem is known to be NP-hard, the MCSBP

is NP-hard too. □
The fact that MCSBP is NP-hard implies that it is very

hard to find the optimal solution. A heuristic method, hence, is
proposed to solve the problem.

III. HIERARCHICAL RESOURCE MANAGEMENT SOLUTION

In this section the main idea and algorithms for the
hierarchical resource management solution is introduced. As
depicted in Figure 2, the proposed solution consists of two
distinct resource managers: the global and local managers.
The global manager assigns VMs to a cluster first, and then
the local manager deploys the VMs to PMs in the cluster.

Modern data centers consist of many clusters (Figure 2),
and the number of PMs in one cluster is bounded because the
cluster’s resource capacity (e.g., power supply and network
bandwidth) is limited. Therefore, a larger data center has more

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

(n
o
rm

a
liz

e
d

)

correlation coefficient (
ij
)

stdev vs. correlation coefficient


X

1

+
X

2


X

1
+X

2

clusters, but typically not bigger clusters. The key advantage
of the proposed solution is that it splits a large problem into a
number of small problems independent of one another.
Because of its small size and independent characteristic, there
is an opportunity to apply more sophisticated and elaborate
solution approaches, which is not possible for the original (flat)
problem because of its very large size.

Data center
(Cloud computing system)

Cluster Cluster Cluster

Lo
ca

l
G

lo
b

alPortfolio effect
maximization

Balanced resource
allocation

Figure 2 A typical cloud computing system and hierarchcial resource

management

While a hierarchical approach is scalable, the quality of
result from it may be much worse than a flat (non-hierarchical)
method. If the original problem is not well divided into sub
problems, the quality of the result may be very bad and
unacceptable. The global manager, therefore, is required to be
designed carefully. Likewise, the local manager should be
designed well to ensure a high quality for the result.

The approach of the global manager is quite different from
that of the local manager. The global manager maximizes the
portfolio effect, i.e., least correlated VMs are deployed on the
same cluster. On the other hand, the local manager makes the
balanced usage of resource types within a PM. More detailed
explanation of the managers is provided in the following
section.

A. Global Resource Manager

The global resource manager assigns VMs to clusters. For
better quality of the overall result, the proper objective should
be chosen. Our objective is to minimize the total resource
usage of clusters (8). The resource usage is simply defined as
the sum of resource allocation of each type. Note that total
mean is always the same regardless of VM deployment
methods. On the other hand, the standard deviation is not, that
is, it can be decreased using a well-designed method. In this
paper, the cost is introduced and defined as the sum of the

standard deviations (∑ ∑

). The objective is to

minimize this cost. Intuitively, this objective leads to the
followings: first, the least correlated VMs are assigned to the
same cluster, and the gross amount of resource allocation is
minimized. Second, the local manager could assume VMs are
uncorrelated, which makes the solution simpler and faster.

  
1 11 1

min min
C Kk k k

c c cc k

C K

c k
  

  
     (8)

where
 √∑ ∑ (

)(
)

 and

∑ (

)
 . =1 if is deployed on

cluster and 0 otherwise.
Some VMs may be correlated with one another. For

example, multiple VMs may be spawned off by the same
application or VMs may correspond to different tiers of a
multi-tiered application, etc. We can imagine two distinctive
situations: all VMs are uncorrelated or some VMs are
correlated with one another. Because the uncorrelated case is

simpler, we analyze and solve this case first in order to get
some useful intuitions. After that we extend the algorithm for
the other situation (correlated).

The key idea in the algorithm is based on the following
proposition [14]:

Proposition: Suppose we have N items and C bins. Size of

all items is 1 (constant) and cost of each item is (n = 1, 2,

… , N). The size of the bin is (integer) and total size of

all bins is the same as the number of items (∑

). The

items are sorted in non-increasing order of their costs (
for). The bins are also sorted in non-increasing order of
their sizes (for). Set is the set of items put

into the bin. The overall cost is defined as:

 overall cost:=
2

1 c

C

nc n S


   (9)

The cost is minimized if the bigger bin contains the items with
greater cost(10).

   for and a i jb a S b S i j     (10)

The proof of the proposition is shown in [14]. Note that
the proposition is not perfectly fit our problem because it
assumes that the size of items is constant. The proposition,
hence, cannot be used without modifications. The modification
is made based on a simple intuition as follows; assume that an
item is already in a bin and the item will be replaced by other
items with smaller size. For the sake of simplicity, the
substitutes are assumed to be identical (i.e., their size and cost
are all the same). With the further assumption that the ratio of
the original item’s size to the substitutes’ size is integer, we
can show that the substitution decreases the overall cost (9) if
the following inequality holds:

2 2

original substitute

original substitute
sizesize

 
 (11)

Hence, the cost of is redefined (12), and the proposed
algorithm assigns VMs to clusters based on this cost.

 2

1 1

2

1
:cost

k k

n n

K K

R R

K k

n nn

k k k

n n nk k

k
n

n n

a

a b a



    
 


 

  



 
(12)

The pseudo code of a VM-to-cluster algorithm (VM2C,
preliminary version) is shown below. Its main structure is
similar to the First Fit Decreasing (FFD) heuristic [15].

VM-to-cluster Algorithm (VM2C): uncorrelated

Inputs:
 , , ,

 ,
 , and

Output:
1: sort clusters C by its size (∑

) in non-increasing order

2: sort VMs by its cost (12) in non-increasing order
3: for each cluster C do
4: for each unassigned VM do
5: = 1 // assign to cluster C
6:

 (8)

7: if
 then

8: = 0 // cancel the assignment
9: end if
10: end for
11: end for

Figure 3 VM-to-cluster Algorithm for uncorrelated case

As shown in Figure 3, we sort clusters and VMs in non-
increasing order (lines 1 and 2) by cluster’s size and VM’s
cost respectively. The size of a cluster is calculated by

aggregating the total amount of resource types of all PMs in
the cluster. For each cluster, the algorithm pre-assigns the VM
(lines 4 and 5) with largest cost (12) among all unassigned
VMs. It calculates the total amount of resource that the cluster
is supposed to provide (line 6). If it is greater than the capacity
of the cluster, the assignment is canceled (line 7 and 8). The
above steps are repeated until either all VMs are assigned or
all clusters are full.

The above algorithm is required to be extended to support
the correlated cases. Dealing with the correlated case requires
very high amount of computing resources because the
complexity of correlation calculation is square of the number
of VMs. Finding the optimal solution takes huge amount of
time and it may not be practical. Hence, we present a heuristic
approach to solve the problem.

The main idea in the heuristic is that a VM is assigned to a
cluster one at a time and the best VM is selected in a greedy
manner. Suppose that N VMs are already in a cluster and
another VM is going to be assigned to the cluster. The new
variance of the cluster becomes:

    

    

2

' 1 1

2

1 1 1 11
 +2

N Nk k k

c ic jc ij i i j ji j

N k k k

ic nN n n N N N Nn
g a a a

g g a a

   

  
 

   





 
 (13)

The increase in variance (
) is shown in (14). The

overhead is defined as the ratio of the amount of increase to
the total resource demands of (15).

    
2

, 1 1 1 1 11
2

Nk k k k

c N ic nN n n N N N Nn
g a a a   

    
   (14)

 

1

, 1

1 1 1 1 11

, 1
:

K

k

c N K k k k

N N N N Nk

k

c N
overhead

a b a  





    




 




(15)

The final version of the VM2C algorithm (Figure 4) is
nearly identical to the preliminary version (Figure 3) except
for a few lines (lines 5 through 7). The algorithm considers the
first W (it is called ‘window size’) VMs as candidates for
allocation, and choose one of which overhead (15) is smallest
among the candidates.

VM-to-cluster Algorithm (VM2C): correlated

Inputs:
 , , ,

 ,
 , and

Output:
1: sort clusters C by its size (∑

) in non-increasing order

2: sort VMs by its cost (12) in non-increasing order
3: for each cluster C do
4: while true then
5: for the first W unassigned VMs do
6: find a VM of which overhead (15) is smallest
7: end for
8: = 1 // assign to cluster C
9:

 (8)

10: if
 then

11: = 0 // cancel the assignment
12: break // break while loop
13: end if
14: end while
15: end for

Figure 4 VM-to-cluster Algorithm (final version)

It is important to choose a proper window size (W) for
better results; Bigger W may produces higher quality of result,
but at the same time, increases the execution time of the

algorithm. It is not simple to find the best W; this topic will be
discussed at Section IV.

B. Local Resource Manager

The local resource manager deploys VMs, which are
assigned to a cluster by the global manager, on PMs in the
cluster. The problem of local level is identical to the original
one (5) except for the problem size; its size is much smaller
than that of the original problem. The local–level problem is
also NP-hard, so we propose a heuristic algorithm.

As mentioned before, the problem can be formulated into
the MCSBP problem. Note that a multi-capacity bin packing
(MCBP) problem is different from a classical multi-
dimensional bin packing (MDBP) problem; the difference is
depicted in Figure 5. In this example, each bin and item has a
pair of capacity (horizontal and vertical) information. In a
MDBP problem, an item can be put into a bin if there is
enough geometric space for the item. The MCBP problem,
however, differs from the MDBP problem; once an item
deployed on a bin, the corresponding capacity is dedicated to
the item and not available to other items.

Item1

Item3

Item5

Item1

Item3

Item5

Item2

Item4

Item7

(a) multi-dimensional bin packing (b) multi-capacity bin packing

Figure 5 Multi-dimensional vs. multi-capacity bin packing

Nilabja et al. propose several heuristics for solving the
MCBP[16]. The heuristics are very efficient but the quality of
results is less than satisfactory. William et al. propose
permutation pack (PP) and choose pack (CP) heuristics [17].
The quality of results from the PP is quite good but its
complexity increases exponentially as the number of resource
types grows. CP is simpler than the PP but the quality of
output is worse. In this paper we present a heuristic algorithm,
which is better than PP in terms of both the quality of results
and algorithm’s running time.

The key idea in the proposed algorithm is to achieve
balanced resource allocation: deploy a VM to a PM where
amount of available resources is most ‘similar’ to that of the
VM. A detailed explanation of ‘similarity metric’ is presented
below. First, two resource vectors are defined (16): ⃗ and ⃗ .
 ⃗ is a resource demand vector of and ⃗ is an available
resource vector of .

 ⃗ () , ⃗ () (16)

where

 , and is the amount of

available resource of a . The difference between the PM
and VM is defined as the distance of two unit-sized vectors
(17). The algorithm selects the PM with the minimum
difference, which means the PM is most ‘similar’ to the VM.
The basic structure of the VM-to-PM algorithm (VM2PM) is
similar to the best fit decreasing (BFD) algorithm. For us, best
means the smallest difference (17).

 ‖
 ⃗⃗ ⃗⃗⃗

‖ ⃗⃗ ⃗⃗⃗‖

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗

‖ ⃗⃗ ⃗⃗ ⃗⃗ ⃗‖
‖ (17)

There may be no feasible solution at the local level. If the
local manager cannot deploy some VMs, it gives the list of
those VMs to the global manager. The global manager assigns

these VMs to other clusters. These steps are repeated until
either all VMs are assigned or all clusters are full.

C. Flat VM Allocation Algorithm

A hierarchical solution is generally scalable, but the quality
of result may be worse than that of a flat solution. For the
purpose of comparison, we develop a flat version of VM
allocation algorithm, which conceptually merges VM2C
(global) and VM2PM (local) algorithms. First, find
candidate VMs of which difference is smallest (line 4). Among
the candidates, choose the VMs with the least cost (12)
(line 5 and 6). Finally, pick the VM with the smallest overhead
(15) among the VMs, and deploy the VM to the PM.

Flat VM Allocation Algorithm (FLAT)

Inputs:
 , , ,

 ,
 , and

Output:

1: sort PM by its size (∑

) in non-increasing order
2: for each PM do
3: do while the PM is not fully assigned
4: find candidate VMs with smallest difference (17)
5: sort the VMs by its cost (12) in non-increasing order
6: for the first candidate VMs do
7: find a VM of which overhead (15) is smallest
8: end for
9: = 1 // assign to
10: if is full (cannot meet QoS)
11: = 1 // cancel the assignment
12: break // break while loop
13: end if
14: end for

Figure 6 Flat VM allocation algorithm

IV. SIMULATION RESULTS

A. Simulation setup

For the simulation we needed the following data:
1) capacity of PMs, 2) list of PMs in clusters, 3) resource
demands of VMs, and 4) the correlation coefficients among
VMs. The data is randomly generated based on the following
information:

 Number of VMs (N), PMs (M), and clusters (C)

 Workload intensity of VMs: upper and lower bounds of
and

 Scale factors of resource: upper and lower bounds of
 and

 (the same bounds are applied to all VMs)

 Capacity of PMs: upper and lower bounds of
 (the same

bounds for all PMs)

 Dimension of resource (K): the number of resource types

It is also randomly decided which PMs are placed in which
clusters (topology). Because VMs are heterogeneous,
workload intensity is randomly generated using the given
bounds. Likewise, the scale factors and PM capacity are
randomly generated.

Making a valid correlation coefficient matrix [] is

important, so we use the hypersphere decomposition [18]
method, which is a relatively simple method for generating a
valid correlation matrix.

B. Global Resource Manager

The objective of the global resource manager is to
minimize the sum of standard deviations of clusters (8), which
will be called cost in this section; lower cost means better
quality of the solution.

To assess the quality of solutions generated by the
proposed algorithms, our solution is compared with some
other well-known methods:
 SA – use a simulated annealing algorithm [19]. It does not

guarantee to find the global optimal point, but it finds a near-
optimal. This method may generate different solutions each time,
so we run the SA six times and pick the ‘best’ result. SA takes
very long time to find a solution and it is not practical, but it can
be a good indicator of determining the quality of other
algorithms.

 random – assign randomly. If a solution is worse than random,
it implies the quality of the solution is quite poor. We run
random algorithm ten times and report the ‘average’ of these
runs.

 FFD – use First Fit Decreasing algorithm, which is a well-
known and commonly used heuristic to solve the bin packing
problem. It treats the problem as a single capacity bin packing
problem by assuming there is only one type of resource; it uses
an aggregate amount of all kinds of resource.

 PM2C – use the PM-to-cluster algorithm (c.f. Figure 4)

We first investigate the quality of the algorithms by
comparing them with the SA that produces the near optimal
solution. Normalized cost of the algorithms is shown in Figure
7. For a fair comparison, we generate eight different test cases
based on the same setup and run simulations. Note that even
with the same setup, the results can be different because the
data is randomly generated in each case (c.f. Section IV-A).

As depicted in Figure 7–a, PM2C produces the best result,
which is even better than SA. The cost of random is biggest as
expected. FFD is better than random but its cost is around 30%
greater than PM2C. The same trend is observed for K=7
(Figure 7–b).

Figure 7 Quality comparison among the algorithms (N=500, W=50)

The cost of result and running time from four different N
values are presented in Figure 8. The original data has 2000
VMs in it and the other three data are made from the original
one by random sampling. The same trend is observed in both
cost and running time for four N values: 1) the rate of
reduction in the cost decreases as W increase. 2) running time
is linearly increasing as W increase. Note that the slope of
smallest N (=500) is most steep, which is because growth in
running time is relatively bigger compared to the running time
itself.

1 2 3 4 5 6 7 8

0.8

1

1.2

1.4

1.6

1.8

2

2.2

cases

co
st

 (
n

o
rm

a
li

ze
d

)

(a) K = 3

1 2 3 4 5 6 7 8

0.8

1

1.2

1.4

1.6

1.8

2

2.2

cases

(b) K = 7

SA

random

FFD

VM2C

Figure 8 Cost and algorithm running time vs. window size (W)

As mentioned before, choosing the proper window size (W)
of PM2C is quite important. Unnecessarily large W is not
acceptable due to very long running time. It is hard to find the
optimal window size from an analytical way. Instead, we
propose a simple way to find the proper window size; as
shown in Figure 8, relationship between cost and window size
is very similar among the four cases. First, make a smaller
problem by randomly select VMs and PMs from the original
problem (random sampling). Next, run PM2C multiple times
with different W and find the best W. As shown in Figure 9,
running time is deeply dependent on the problem size (N), so
investigation of smaller problem can find a proper window
size in a shorter time.

Figure 9 Running time vs. W for different problem size (N)

C. Local Resource Manager

The local resource manager deploys VMs to PMs. In order
to assess the quality of results from the proposed algorithm, it
is compared with the below heuristics:
 Permutation Pack (PP) [17] – for each bin, find an item whose

ordering of the resource demands best matches the ordering of
residual resources in the bin. This algorithm only considers ‘w’
resource types which are mostly important, and the window size
(w) is the same as dimension of resource (K) unless it is

specified. The complexity of PP is (

()
), and this increases

rapidly as resource dimension (K) increases.

 FFD – use First Fit Decreasing algorithm. It is the same as the
FFD presented in Section IV-B.

 VM2PM – use the VM-to-PM algorithm (VM2PM).

The VM2PM generates the best quality of result (c.f.
Figure 10). PP is the second best and both and FFD are
the worst. FFD is a simple algorithm and its running time is
smallest. Running time of PP exponentially increases as
resource dimension increases. Figure 10 implies that PP is not
applicable when K is greater than 8 because of huge running
time. On the other hand, the proposed algorithm, VM2PM,

could be used even if K is pretty large. Note that is
supposed to be simpler than PP because it considers the order
of three biggest resources only, but the running time of
is larger than that of PP when K is less than four. It is caused
by a way of implementation; the algorithm makes a list for
comparison of the order, and revises the list only when
window size (w) is specified. Because of this additional
computation, the running time of is greater than PP for
K < 4.

Figure 10 Cost and running time vs. dimension of resource (K)

D. Overall performance comparisons

We have shown that the proposed algorithms are simple
and work well for both global and local resource allocations.
However, the high quality of each level does not necessarily
guarantee the high quality of the overall solution. In this
section, we will compare the quality of the final solution
generated by different algorithms and verify that the proposed
algorithms produce high quality solutions. In addition to this,
we run the simulation for a large number of VMs, and show if
the proposed scheme is scalable or not. In this section the
results of below heuristics are presented:
 FINAL – use the proposed hierarchical algorithms: VM2C and

VM2PM algorithms.

 PP – use permutation pack algorithm. It is non-hierarchical
method.

 FFD – use First Fit Decreasing algorithm. It is the same as the
FFD presented in Section IV-B. It is non-hierarchical.

 FLAT – use the flat VM assignment algorithm (Figure 6). W2 is
equal to W of FINAL and W1 =5W2

For the simulation K is set to 7; if K is greater than 7
running time of PP become very large (Figure 10) even for
small N. Comparison among the algorithms with different
numbers of VMs (N) is reported in Figure 11. It is seen that
costs of FFD and are much larger than those of all the
others. For the all cases FLAT produces the best results. PP
and FLAT produce similar quality of results. The difference in
cost between FLAT and FINAL is less than 4%; which implies
the quality of FINAL’s result is quite similar to that of FLAT.

The scalability is the one of the most important features of
the resource management solution for the cloud computing.
Hence, the relationship between running time of the
algorithms and problem size is very important. The running
time of the proposed algorithm is calculated as follow:

 max()running time global localT T T  (18)

where and are running time of the global

resource manager and local resource managers, respectively.
The local managers run in parallel; therefore, the longest
execution time among them is considered for the calculation.

0 20 40 60
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
co

st
 (

n
o

rm
a

li
ze

d
)

size of window (W)

(a) cost

0 20 40 60
1

2

3

4

5

6

7

8

9

ru
n

n
in

g
 t

im
e

(n
o

rm
a

li
ze

d
)

size of window (W)

(b) running time

N=500

N=1000

N=1500

N=2000

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5
x 10

7

ru
n

n
in

g
 t

im
e

(s
ec

o
n

d
)

size of window (W)

N=500

N=1000

N=1500

N=2000

0 5 10
0

1

2

3

4

5

6

dimension (K)

co
st

 (
n

o
rm

a
li

ze
d

)

(a) cost

0 5 10
10

0

10
1

10
2

10
3

10
4

dimension (K)

ru
n

n
in

g
 t

im
e

(n
o

rm
a

li
ze

d
)

(b) running time

FFD

PP
w=3

PP

VM2PM

Figure 11 Quality comparison among the algorithms

The running time comparison among the algorithms is
shown in Figure 12. Both PP and FLAT run for a very long
time to find a solution for the large number of VMs because
they are non-hierarchical methods which are not scalable in
general. Because of their large running time, both PP and
FLAT may not applicable to the large-sized problems. On
the other hand, the running time of all other heuristics is
acceptable. Note that the increase rate in running time of
FINAL is smallest among the algorithms; this is one of the
key benefits from a hierarchical method. The quality of the
FFD’s result is too low as shown in Figure 11 (20% greater
than FLAT), so FFD is not acceptable either. For the same
reason, is not a good solution. Hence, FINAL is the
best method among these algorithms and its cost is around
15% less than FFD and .

Figure 12 Running time comparison among the algorithms

V. CONCLUSIONS

With increasing energy cost of cloud computing systems,
necessity of energy aware resource management techniques
has been growing. This paper proposed a hierarchical
resource management solution which produces high quality
solutions and is scalable for a number of resource types as
well as a number of VMs. The resource demands are
modeled as random variables and correlation among these
RVs are considered. The proposed solution outperforms a
well-known heuristic algorithm; it achieves around 15% cost
reduction compared to FFD with acceptable running time.

REFERENCES

[1] Fehrenbacher, K. (2012) The era of the 100 MW data center.

[2] Cook, G. and Horn, J. V. (2011) How dirty is your data. A Look at the
Energy Choices That Power Cloud Computing.

[3] Barroso, L. A. and Holzle, U. (2007) The case for energy-proportional

computing. Computer. 40(12) 33-37.
[4] Mehta, S. and Neogi, A. (2008) Recon: A tool to recommend dynamic

server consolidation in multi-cluster data centers. Network Operations

and Management Symposium, 2008. NOMS 2008. IEEE. IEEE.
[5] Christopher, C., Keir, F., Steven, H., Jacob Gorm, H., Eric, J., Christian,

L., Ian, P. and Andrew, W. (2005) Live migration of virtual machines.

Proceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation - Volume 2 USENIX Association.

[6] Jon, K., Yuval, R. and va, T. (2000) Allocating Bandwidth for Bursty

Connections. SIAM J. Comput. 30(1) 191-217.
[7] Meng, W., Xiaoqiao, M. and Li, Z. (2011) Consolidating virtual

machines with dynamic bandwidth demand in data centers. INFOCOM,

2011 Proceedings IEEE.
[8] Ming, C., Hui, Z., Ya-Yunn, S., Xiaorui, W., Guofei, J. and Yoshihira,

K. (2011) Effective VM sizing in virtualized data centers. Integrated

Network Management (IM), 2011 IFIP/IEEE International Symposium
on.

[9] Akshat, V., Gargi, D., Tapan Kumar, N., Pradipta, D. and Ravi, K.

(2009) Server workload analysis for power minimization using
consolidation. Proceedings of the 2009 conference on USENIX Annual

technical conference USENIX Association.

[10] Xiaoqiao, M., Canturk, I., Jeffrey, K., Li, Z., Eric, B. and Dimitrios, P.
(2010) Efficient resource provisioning in compute clouds via VM

multiplexing. Proceedings of the 7th international conference on

Autonomic computing ACM.
[11] Breitgand, D. and Epstein, A. (2012) Improving consolidation of

virtual machines with risk-aware bandwidth oversubscription in
compute clouds. INFOCOM, 2012 Proceedings IEEE.

[12] Billingsley, P. (2012) Probability and Measure Wiley.

[13] Rudd, A. and Clasing, H. K. (1988) Modern portfolio theory: the
principles of investment management Andrew Rudd.

[14] Hwang, I. and Pedram, M. (2012) Portfolio Theory-Based Resource

Assignment in a Cloud Computing System. Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference on.

[15] Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. (2001)

Introduction To Algorithms MIT Press.
[16] Nilabja, R., John, S. K., Nishanth, S., Gautam, B. and Douglas, C. S.

(2008) Toward Effective Multi-Capacity Resource Allocation in

Distributed Real-Time and Embedded Systems. Proceedings of the

2008 11th IEEE Symposium on Object Oriented Real-Time Distributed

Computing IEEE Computer Society.

[17] William, L., George, K. and Vipin, K. (1999) Multi-Capacity Bin
Packing Algorithms with Applications to Job Scheduling under

Multiple Constraints. Proceedings of the 1999 International Conference

on Parallel Processing IEEE Computer Society.
[18] Rebonato, R. and Jäckel, P. (2000) The most general methodology for

creating a valid correlation matrix for risk management and option

pricing purposes. Journal of Risk.
[19] Christopher, C. S., cim and Bruce, L. G. (1983) Optimization by

simulated annealing: A preliminary computational study for the TSP.

Proceedings of the 15th conference on Winter Simulation - Volume 2
IEEE Press.

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000

1

1.1

1.2

the number of VMs (N)

co
st

 (
n

or
m

a
li

ze
d

)

FINAL

PP
w=3

PP

FLAT

FFD

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

600

700

800

900

the number of VMs (N)

ru
n

n
in

g
 t

im
e

(n
o

rm
a

li
ze

d
)

(a) linear scale

0 2000 4000 6000 8000 10000
10

0

10
1

10
2

10
3

the number of VMs (N)

ru
n

n
in

g
 t

im
e

(n
o

rm
a

li
ze

d
)

(b) semi-logarithmic scale

FFD

PP
w=3

PP

FLAT

FINAL

