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Abstract — This work focuses on the load balancing 

problem for online service applications (which are response 

time-sensitive) considering a distributed cloud system 

comprised of geographically dispersed, heterogeneous 

datacenters. An offline solution based on force-directed 

scheduling is presented, which can determine the application 

placement for long periods of time. The solution is then 

extended to do online application placement and migration 

for geographically distributed datacenters based on 

predictions about the application lifetimes, workload 

intensities, dynamic energy prices, and renewable energy 

generation capacities at different datacenters in the cloud 

system. The simulation results demonstrate 27% to 40% 

improvement using the proposed algorithms with respect to 

the method that does not consider the geographical load 

balancing.  

I. INTRODUCTION 

Demand for computing power has been increasing due to the 

penetration of information technologies in our daily interactions 

with the world both at personal and communal levels, 

encompassing business, commerce, education, manufacturing, 

and communication services. Dramatic increase in the 

computing resources requires a scalable and dependable 

information technology (IT) infrastructure comprising of 

servers, storage, network bandwidth, physical infrastructure, 

electrical grid, personnel and billions of dollars in capital 

expenditure and operational cost  to name a few.  

Datacenters associated with a cloud system are typically 

geographically distributed, yet connected together with 

dedicated high-bandwidth communication links. This helps 

reduce the peak power demand of the datacenters on the local 

power grid, allows for more fault tolerant and reliable operation 

of the IT infrastructure, and even, lowers cost of ownership. A 

datacenter itself comprises thousands to tens of thousands of 

server machines, working in tandem to provide services to the 

clients, see for example [1] and [2]. These datacenters can be 

owned by one cloud provider or may be federated.  

Datacenters are usually designed for the worst-case 

workload. At the same time, datacenter workload changes 

drastically depending on the time of the day and day of the 

week. Considering the dynamic energy pricing trend [3], price 

of the electrical energy purchased form the utility companies 

may be a function of time of day or the peak power consumed 

by the consumer. Energy prices at different sites of a 

geographically distributed cloud system can be different due to 

local time differences and differences in local utility company’s 

energy prices. To reduce the reliance on brown sources of 

electricity and supplement/diversify the power generation 

sources for a datacenter, there is a trend to generate electricity 

from renewable sources such as wind and solar at the 

datacenters’ site [4, 5]. Geographically distributed datacenters 

associated with a cloud system create load balancing 

opportunities that can result in a reduction in the total number of 

computing resources provisioned in datacenters (considering the 

time difference between peak workload times in different 

locations), as well as lowering of the operational cost of each 

datacenter by purchasing electrical energy at lower prices 

(considering dynamic energy prices at each site depending on 

the local time) and/or increasing the portion of the renewable 

power generated in some datacenters. 

Geographical load balancing (GLB) can be defined as a 

series of decisions about online assignment and/or migration of 

virtual machines (VMs) or computational tasks to 

geographically distributed datacenters in order to meet the 

service level agreements (SLAs) or service deadlines for 

VMs/tasks and to decrease the operational cost of the cloud 

system.  

Effectiveness of the GLB in case of offline computation 

assignment and scheduling has been demonstrated in previous 

work [6, 7]. Most of the previous work that has focused on the 

GLB problem for online service applications, e.g., [8, 9, 10], 

simplify the VM placement and migration problem to a request 

forwarding problem for a VM type or a collection of VMs. This 

representation ignores the heterogeneity of VMs, the VM 

packing problem, and real VM migration cost and can thus 

result in low performance in a real cloud system. 

In this work, we focus on the GLB problem for 

heterogeneous online service applications that are response 

time-sensitive. Communication latency, queuing and service 

delays, and VM migration penalty are the most important 

factors for determining the VM to datacenter assignment 

solution. The availability of each type of resource in a 

datacenter, peak power capacity, and varying power usage 

effectiveness (PUE) of a datacenter are considered in modeling 

the datacenter. There are two versions of the GLB solution: (i) 

an offline solution, which considers every optimization variable 

to be determined deterministically in order to derive a complete 

VM placement and migration solution for a long period of time, 

and (ii) an online solution, which uses prediction of the 

variables for the future to derive VM placement and migration 

for a short period of time. The offline solution can be used 

during the design of geographically distributed datacenters to 



 

 

reduce the initial capital expenditure and expected operational 

cost of the datacenter.  

This paper presents a novel algorithm based on force-

directed scheduling [11] to solve the offline problem for 

geographically distributed datacenters. This algorithm is 

subsequently extended to an online solution to perform periodic 

VM placement and migration management for online service 

applications based on the prediction of application active 

periods, workload types and intensities, electrical energy prices, 

and potential generation of renewable energy in the near future. 

The effectiveness of the proposed solutions is demonstrated by 

comparison them to a case without the GLB capability. 

This paper is organized as follows. The most relevant prior 

work is reviewed in section II. Parameter definition and precise 

problem formulation for the offline scenario are given in 

sections III and IV. The offline version of the solution is 

presented in section V while online problem formulation and 

solution are presented in section VI. Simulation results are 

presented in section VII and paper is concluded at section 0.   

II. RELATED WORK 

The GLB can be seen as the high-level resource 

management problem in the cloud system. Resource 

management problems in cloud computing systems have 

attracted a lot of attention in recent years. Datacenter, VM and 

SLA modeling, and resource management solutions inside a 

datacenter are extensively discussed in the previous work, cf. 

[12, 13, 14, 15, 16, 17, 18]. In this section, a review of the most 

relevant work to the GLB problem is provided. 

Some prior work has focused on reducing the operational 

cost of the cloud system by using the load balancing opportunity 

– see [19] and [20]. Model predictive control has been used to 

solve the GLB problem using the estimated future load, e.g., [21] 

and [22]. These studies consider homogenous datacenters 

(where all servers are identical), which is far from the real-world 

situations. Reference [8] considers heterogeneous datacenters 

(comprised of servers with different performance and power 

dissipation figures, and even with instruction sets), which results 

in a more elaborate load balancing mechanism. Unfortunately, 

this work still ignores the heterogeneity of VMs, VM packing 

problem, and realistic VM migration cost and can result in low 

performance under realistic scenarios. 

GLB increases the chances for effective utilization of 

renewable power sources in datacenters. For instance, a recent 

work in [23] investigates the feasibility of powering up a 

geographically distributed datacenter with only renewable 

power. A possible disadvantage of GLB is that the access to 

cheap electrical energy purchased from the local utility 

companies may result in an increase in the datacenter’s power 

consumption. Considering the environmental cost of energy 

usage (e.g., carbon emission) can eliminate this possibility. For 

example, reference [9] shows that if the electricity price is set 

based on the share of the brown energy to the total produced 

energy, GLB can reduce the brown energy usage. Similarly, Le 

et al. [10] present algorithms that reduce the brown energy 

usage in geographical distributed datacenters.   

Considering offline computation adds another perspective to 

the GLB problem i.e., the possibility of computation deferral. 

Computation deferral is only appropriate for batch applications 

with loose deadlines and can be used in combination with online 

service application load scheduling to further reduce the total 

energy cost or brown energy consumption of a datacenter. 

Reference [6] focuses on computation scheduling in datacenters 

and computation deferral to minimize the energy cost. 

Reference [7] solves the GLB problem considering online 

service and batch applications and cooling supply selection in 

datacenters. The cooling supply choices considered in this paper 

are to use a chiller or outside air cooling. 

III. PARAMETER DEFINITIONS 

The GLB solution for online service applications is a 

periodic VM assignment to and/or VM migration across 

geographically distributed datacenters if necessary. The 

objective of the GLB problem is to minimize the operational 

cost (the electrical energy bill plus SLA penalty) of the cloud 

system while satisfying resource, peak power capacity, and SLA 

constraints. Note that the decisions in the GLB solution are 

focused on the cloud-level VM assignment and migration. Each 

datacenter has its own VM management that assigns VMs to its 

servers and migrates VMs. The datacenter-level VM 

management and migration are out of the scope of this paper. 

An exemplary figure for a geographically distributed datacenter 

is shown in Figure 1.  

 
Figure 1 – An exemplary figure for a geographically distributed cloud 
system 

In this work we focus on solving the GLB problem in case 

of heterogeneous VMs and heterogeneous servers in each 

datacenter. We present two versions of the solution to this 

problem: (i) An offline solution considering predicted workload, 

known renewable power generation capability, and dynamic 

electrical electricity prices; (ii) A periodic online solution to 

decide about the VM placement and migration for the current 

time based on the immediate information and predictions about 

the future. Note that the assumption in the offline version of the 

problem is simplistic but the offline solution can be used in 

capacity provisioning for datacenters, determining datacenter 

site locations, or the amount of renewable power source 

construction near each datacenter. Moreover, as shown in this 

paper, the offline solution can be extended to the online version, 

which can be used in VM management in a cloud system.  

The time axis in the GLB problem is divided into time slots 

called epochs. Each epoch is identified by a unique id, denoted 

by  .    denotes the duration of each epoch, which is in the 

order of a few minutes to as much as an hour. New VMs are 

only admitted at the beginning of each epoch. Similarly, 

decisions about VM migration and placement are only applied at 

the beginning of each epoch. In addition to this decision making 



 

 

process, a reactive manager migrates VMs between different 

datacenters in the case of drastic workload changes, which may 

create SLA, peak power, or thermal emergencies.  

The solution to the GLB problem involves information about 

(or prediction of) the dynamic energy prices, renewable power 

generation capability, VM workload, and VM active period. The 

quality of these predictions determines the quality of the 

proposed solution to the GLB problem. In the first part of the 

paper, we consider an offline version of the problem that 

assumes perfect prediction of these parameters and determines 

the complete VM placement and migration for a long period of 

time e.g., a full day. Definitions of parameters for the offline 

version of the problem are given next.  

  denotes the set of consecutive epochs that we consider for 

the offline version of the GLB. Similar to the online solution, 

the offline solution changes the VM assignment solution only at 

the beginning of each epoch. Each VM and each datacenter are 

identified by a unique id, denoted by i and d respectively.      

denotes the set of active VMs in each epoch and   denotes the 

set of geographically distributed datacenters. 

A time-of-use (TOU) dependent energy pricing scheme is 

considered for each utility company. The energy price is 

assumed to be fixed for each epoch.        denote the energy 

price in datacenter d during epoch  . TOU-dependent energy 

pricing scheme (in contrast to peak-power dependent energy 

pricing) enables one to ignore the time variation of renewable 

power generated in local renewable power facilities during an 

epoch and model the amount of generated renewable power by 

the average generated power in that epoch, which is denoted by 

     . The allowed peak power consumption of a datacenter is 

determined by the power delivery network in the datacenter and 

is denoted by       . To translate the average power 

consumption to       , peak to average power ratio (       ) 

is used. This parameter depends on the resource capacity of the 

datacenter and the set of VMs assigned to the datacenter.  

The PUE factor of a datacenter, which is defined as the ratio 

between total power consumption of the datacenter to the power 

consumed by the IT equipment in the datacenter, is dependent 

on the datacenter design (including facility planning and 

management and cooling technology) and the amount of 

instantaneous power consumption. We consider the PUE factor 

to be decomposed to a constant factor (    ), which accounts 

for the uninterrupted power supply (UPS) inefficiencies within 

the datacenter, and a load-dependent factor (           ), 

which captures the inefficiency of the air conditioning units in 

the datacenter. In the load-dependent factor, the coefficient-of-

performance (       ), which models the amount of power 

consumed by the air conditioning units, depends on the 

temperature of the supplied cold air, which is in turn a function 

of the IT equipment power dissipation in the datacenter. 

Optimal         is a monotonically decreasing function of the 

average power consumption in the datacenter.  

We consider only the processing capacity as the resource in 

each datacenter (consideration of other resource types such as 

the storage or network bandwidth falls outside the scope of 

present paper). To model each datacenter more accurately, we 

consider datacenters with heterogeneous servers. Each server 

type is identified by a unique id   in each datacenter and the set 

of server types in each datacenter is shown by   .      denotes 

the number of servers of type   in datacenter  . Different server 

types have different characteristics in terms of their processing 

speed (CPU cycles per second) and power consumption.  

Due to non-energy proportional behavior of the servers [24], 

it is important to translate the amount of resources required in 

the server pool to the number of active servers. To capture the 

VM packing effect, we assume that any active server of type j, 

is utilized by an average value (smaller than one, e.g., 0.8) 

denoted by  ̅ . The rationale is that considering any resource 

requirement value, server-level power management strategies 

including server consolidation or dynamic voltage and 

frequency scaling methods are employed in the datacenter 

ensuring that an active server is utilized at a high level so that 

we avoid having to pay the penalty associated with the non-

energy proportionality behavior of the servers. This average 

utilization level for different server types may not be the same 

because the characteristics and configuration of each server type 

in terms of its power consumption vs. utilization level curve as 

well as the amount of memory, local disk size, network interface 

bandwidth are generally different.  

The average power consumption of each of these resource 

types in datacenter can be found by multiplying the average 

power consumption of a typically utilized server of given type 

( ̅   
 
   

 ) by the number of servers needed to support the 

assigned VMs in the datacenter. In this formula,    
  and   

 
 

denote the idle and utilization-dependent power consumption of 

a server of type  . 
Each client of the target cloud system creates one VM to 

execute its application. The SLA for online service application 

determines a target response time for requests generated by the 

VM. The cloud provider must guarantee the satisfaction of this 

response time constraint for a percentage of incoming requests 

(e.g. 95%) and agrees to pay a fixed penalty for any request 

violating the response time constraint. Moreover, SLAs 

determine VM migration cost, which is the penalty for service 

outage due to VM migration.    
    

    denotes the VM 

migration cost between datacenter   and   . 

Let   
   

    denote the amount of servers of type j in 

datacenter d allocated to VM   in epoch  . To determine this 

resource allocation parameter for each VM, a performance 

model must be considered. Each VM will have different 

resource requirements and exhibit different response time 

behavior if it is assigned to different server types. Moreover, 

dependence of a VM’s request response time in a host 

datacenter can be determined based on the communication 

distance between the VM’s origination point and the host 

datacenter, the data rate in dedicated communication channels, 

the packet size of the incoming requests and outgoing response.    

Performance models proposed in the literature can help 

translate the resource allocation parameter to specific SLA 

violation cost or price based on the client’s SLA requirements, 

VM workload in the epoch, execution behavior of VM on the 

specific server type, and the communication latency. The 

performance model can be abstracted by parameter   
   

    and 

function     
   

     that denote the least amount of the 

computing resource needed in order to guarantee satisfaction of 

the SLA constraint and the expected SLA cost of VM i in epoch 

  with allocation parameter   
   

   , respectively. According to 

definition,       . Ignoring   
        , this function is 



 

 

monotonically decreasing with respect to   
   

   . If the 

communication latency of assigning a VM to a datacenter 

violates the SLA response time constraint, parameter   
   

    

will be equal to infinity in order to avoid such assignments.   

Note that constraint   
         

       guarantees that the 

SLA constraint will be satisfied based on the assumed 

performance model but in order to satisfy the SLA constraints, 

the host server monitors the performance of the application and 

in case of SLA violation increases the amount of resource 

allocated to it or requests VM migration from the datacenter-

level resource manager. 

IV. PROBLEM FORMULATION FOR THE OFFLINE PROBLEM 

The offline version of the GLB problem can be formulated 

as follows:  
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where      denotes the           and Parameter   is a very 

small positive value. Note that         is equal to 0.  

The optimization parameters in this problem include the 

assignment parameters (  
    ) and the allocation parameters 

(  
      ). The objective function includes three terms: (i) the 

energy cost paid to the utility companies, (ii) the VM migration 

cost, and, (iii) the SLA cost of VMs based on the VM 

assignment and amount of resources allocated to them. 

Equation (1) determines the average power consumption of 

each datacenter based on the allocated resource to VMs. 

Constraint (2) determines the pseudo-Boolean assignment 

parameter for each VM in each epoch. Constraint (3) forces the 

amount of resources allocated to each VM to be greater than 

  
   

   . Resource capacity constraint for each server type in 

each datacenter is captured by constraint (4). Constraint (5) 

determines the migration cost associated with each VM. The 

migration cost is equal to zero unless the VM is migrated from 

datacenter    to   in epoch  . In the latter case, the migration 

cost is equal to    
    

. In order to consider the initial VM 

assignment solution, if VM   is initially assigned to datacenter 

 ,   
      is set to one. Finally, constraint (6) captures the peak 

power capacity constraint in each datacenter. 

The GLB problem is an NP-hard optimization problem. 

Most of the previous work [8, 9, 10, 19] has focused on solving 

the GLB problem with continuous workload approximation. The 

problem can subsequently be solved using convex optimization 

methods. The continuous approximation of the GLB problem is 

acceptable in case of homogenous VMs or simple request 

forwarding scenarios in a cloud system. This simplification 

cannot, however, accurately capture the VM migration cost and 

may result in poor performance due to the necessity of deciding 

about the actual VM placement after finalizing the load 

balancing solution. In this work, we present an online and 

offline solution to the GLB problem for online service 

applications in the cloud system. 

V. ALGORITHM FOR THE OFFLINE SOLUTION  

As explained in section III, in the offline version of the 

problem, we assume that every input parameter is known as 

opposed to an online scenario in which these parameters are 

only predicted with certain confidence. The input parameters in 

this problem are the VM arrival time and active period, the VM 

workload in each epoch, energy price and generated power in 

the renewable power plant for each datacenter. We consider 

these parameters to be fixed during an epoch. Making this 

assumption means that the frequency of drastic changes in the 

system is considered to be greater than the frequency of 

applying the optimization solution.  

The GLB problem involves a resource allocation problem 

for VMs assigned to each datacenter at each epoch. To 

determine the optimal amount of resources that need to be 

allocated to a VM to minimize the summation of energy and 

SLA costs, we need to know the effective energy price and the 

PUE of a datacenter. It is obvious that these values cannot be 

determined without knowing the average power consumption in 

the target epoch but we can estimate         and       by 

using their typical values in previous epochs with similar 

conditions. The problem of finding the best resource allocation 

parameter for VM   if it is assigned to server type   in datacenter 

  may be formulated as follows: 
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In this formulation,  ̂     and    ̂     denote the 

estimated average power consumption and COP, respectively. 

Considering a non-increasing SLA cost function, the problem 

has only one solution in which   
         

      ,   
         or 

it satisfies the following equality (KKT conditions): 
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Considering a constant communication delay for assigning a 

VM to a datacenter, a closed form solution can be found for (8) 

by using the M/M/1 queuing model, cf. [16]. In case of more 



 

 

complicated SLAs or queuing models, it may not be possible to 

obtain a closed form solution for this problem, but a numerical 

solution can be used in such cases. In the rest of this paper, 

  
       denotes the solution of (8) or zero depending on the 

value of   
    . Note that, at any point of the algorithm where 

all VMs are assigned to a datacenter for an epoch, the value of 

  
       can be updated based on real values of       and 

       . 

The GLB problem considering VMs with lifetimes greater 

than single epoch is more complicated than finding the best VM 

placement solution for each epoch because a VM may cost less 

if it is not assigned to its best datacenter in the current epoch so 

as to avoid having to pay for costly VM migration in a next 

epoch. To be able to find an efficient and high-performance 

solution for the GLB problem, we propose a force-directed load 

balancing (FDLB) algorithm, which determines VM placement 

solution based on force-directed scheduling (FDS) [11].  

FDS is one of the notable scheduling techniques in high-

level synthesis. It is a technique used to schedule directed 

acyclic task graphs so as to minimize the resource usage under a 

latency constraint. This technique maps the scheduling problem 

to the problem of minimizing forces in a physical system which 

is subsequently solved by iteratively reducing the total force by 

task movements between time slots. In reference [25], we 

applied this technique to the task scheduling in demand response 

problem. 

To solve the GLB problem using the FDS technique, | | 
instances of each datacenter (one for each epoch) and an 

instance of each VM for each epoch in its active period are 

created. Note that, the instance of a VM in epoch   only has 

interactions with datacenter instances in that epoch and the VM 

instances in epoch     and     (if they exist). Forces in this 

system are defined based on different terms in the objective 

functions and resource and peak power capacities in datacenters. 

Assigning an instance of VM   in epoch   to server type   in 

datacenter   creates the following force in the system: 
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It can be seen that different force elements are defined for 

different parts of the objective function or constraints in the 

GLB problem as explained next.    
       captures the energy 

and SLA costs based on the amount of resources allocated to the 

VM.        captures the VM migration cost whereas     
       

captures the energy cost of the cooling power consumption 

change due to the average power consumption change.    
       

and    
       capture the pressure on the peak power and server 

type   resource capacity constraints in the datacenter. Note that 

   
       and    

       do not have corresponding cost meaning, 

but are added to the force calculation to make sure the capacity 

constraints are satisfied. 

Finding a feasible solution to minimize the objective 

function is equivalent to minimizing the summation of forces 

applied to VM instances. Starting from any solution, we can 

identify the VM instance movements (from a server type in a 

datacenter to another server type in a datacenter) that results in 

reducing the force and execute these movements to reach a 

lower operational cost. The order of these movements affects 

the final results because executing a movement changes the 

forces applied to some other VM instances.  

The initial solution has a significant impact on the quality of 

the final solution for the GLB problem. To be able to perform 

gradual VM movement to reduce the total force, we consider an 

initial solution in which, each VM instance is cloned and 

uniformly distributed between possible resource types in 

different datacenters related to the target epoch. Let       

denote the number of instances for VM   in epoch  . The 

amount of resources allocated to new VM instances is replaced 

by   
             and force components are calculated based on 

this value. Note that the SLA cost for these VM instances 

should be calculated from     
              while the migration 

cost-related force calculation should consider multiple VM 

instances in neighboring epochs with appropriate weights. More 

precisely,        for an instance of the VM should be replaced 

by the following term: 
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Starting from the initial solution, we need to merge instances 

associated with each VM in each epoch to reduce the number of 

instances related to each VM to one for each epoch (       ). 

Speed of the instance merging affects the run-time of the 

algorithm and the overall quality of the solution. We select a 

three-stage merging approach in which first we reduce the 

number of instances for each VM in each epoch to 4 and then 

reduce the number of instances to 2, and finally, determine the 

VM placement. In each stage, the best merging action (least 

force increase) between different VMs and different epochs is 

selected and executed until there are no VMs with more than the 

target number of instances in each epoch. To calculate the best 

merging action and its associated force, the total force applied to 

VM instances is calculated and subtracted from the best total 

force if the instances are reduced to the target number of 

instances. Note that any VM instance movement results in 

changes in forces applied to VM instances associated with the 

datacenters in that epoch and its own VM instances in the 

neighboring epochs. These force changes are captured in 

equation (9) but to calculate the next best VM movement, the 

value of force for affected VM instances needs to be updated.  

After finalizing the VM placement solution, in case of 

resource or peak power capacity constraint violation in 

datacenters, the VM instance movement must be continued until 



 

 

a feasible solution is reached. In this stage, VM instances can 

select any destination resource type in a datacenter in the 

corresponding epoch in contrast to gradual VM instance 

merging, which was limited to select destination(s) between 

current VM instance hosts. In addition to this stage, even 

without any peak power capacity or resource constraint 

violations, the VM movement can be continued to further 

reduce the total cost with the restriction that no VM movement 

that results in any constraint violations should be tried.  

Considering this algorithm, we can formulize the datacenter 

and renewable power plant design problem to minimize the 

capital expenditure and operational cost. The presented 

algorithm can also be modified and used in the online VM 

management in a cloud system comprised of geographically 

distributed datacenters. Details of this extension are given next.   

VI. PROBLEM FORMULATION AND PROPOSED SOLUTION FOR 

THE ONLINE VERSION OF THE PROBLEM 

VM placement in a cloud system comprised of 

geographically distributed datacenters is performed at the 

beginning of each epoch based on the prediction of the 

optimization parameters. The online solution for the GLB 

problem determines the VM placement solution for the current 

epoch (denoted by   in this section  with the consideration of 

future epochs. To make a decision about a VM placement, we 

need to consider its active period, its workload in the next 

epochs, other VMs in the system including existing VMs and 

new VMs that will enter the cloud in the next epochs, and 

energy price and renewable energy generation for next epochs.  

The cloud system cost (     ) in epoch   can be formulated 

as follows: 
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(16) 

The online version of the GLB problem tries to minimize the 

summation of       and the costs of the future epochs (     
  ) by VM placement for the current set of VMs. 

The online GLB solution directly affects       but only 

indirectly affects        . In contrast to straightforward 

calculation of       based on the VM placement solution 

(considering perfect information about optimization parameters 

in epoch  ), estimating         is a difficult task due to the 

following missing information about epoch    : 

(i) Existence of VM   (       ) in epoch    . A 

probability value denoted by          is considered to 

determine the probability of the VM to be active in epoch    . 

This probability is a decreasing function of  . 

(ii) VM   Workload (      ) in epoch    . Considering 

the SLA, workload in our problem formulation may be 

translated into resource allocation parameters. Therefore, we 

consider predicted resource allocation parameters in epoch   

 , denoted by  ̂ 
   

     . 

(iii) Energy price and average renewable power generation. 

We consider   ̂       and  ̂       to represent the 

predicted energy price and average renewable power generation 

in epoch    . 

(iv) The rest of active VMs (            ) and their 

workload in that epoch. Instead of predicting a number of active 

VMs for epoch    , resource utilization related to those VMs 

in datacenters can be used. These resource utilization parameters 

can be found based on the state of the datacenters in similar 

scenarios (same energy price, renewable power generation and 

workload) after removing the resource utilization related to 

VMs that existed in epoch  . The amount of predicted 

background utilized resources for resource type   in datacenter 

  in epoch     is denoted by  ̂        .  

Parameters          and  ̂ 
   

      can be estimated 

based on the historical data about the VM type and VM’s 

original location. Energy price can be predicted based on the 

historical data or information received from utility companies 

and average renewable energy generation can be estimated 

based on weather prediction.   

Based on the predicted optimization parameters, the online 

VM placement problem in a geographically distributed 

datacenter can be set up similar to the offline problem. A 

maximum application lifetime is considered for every VM and 

SLA and migration cost and allocation parameters for VM   in 

epoch     are dampened by probability         . To 

simplify the formulation, in the following formulation, we 

consider the predicted parameters to be equal to their actual 

values for epoch   and set         . The online GLB problem 

can thus be formulated as follows: 

    ∑   ∑  ̂      (         ̂      )
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subject to constraints (2), (3), (5), (6) and 
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This problem can be solved by using the force-directed VM 

placement algorithm for the offline problem. Note that the 

number of VMs in this problem is limited to |    | , which 

results in shorter execution time for this solution. It can be 

shown that, even starting from unsatisfactory background 

resource utilization, the online solution converges to a good 

solution after a number of iterations of the solution because the 

accuracy of the background workload will be improved by 

applying the online solution. 

VII. SIMULATION RESULTS 

To show the effectiveness of the proposed algorithms for the 

GLB problem, a simulation framework is implemented. 

In this simulation framework, we considered a US-based 

cloud system that has five datacenters in California, Texas, 

Michigan, New York, and Florida. The communication rate 

between these datacenters is assumed to be 1Gbps. Size of these 

datacenters rages from 4,000 to 1,600 servers belonging to four 

different server types, selected from HP server types. Duration 

of epoch is set to one hour. The average utilization of servers is 

assumed to be 70%. Peak power capacity of each datacenter is 

set to 80% of the peak power consumption of the deployed 

servers and cooling system. Based on the weather patterns, each 

datacenter has a combination of solar and wind power plant with 



 

 

power generation capacity of up to 20% of its peak power 

consumption. The renewable power generation changes during 

the day based on type of the power plant. Energy price of each 

datacenter is assumed to follow the pattern shown in Figure 2 

with appropriate time shift.  

 
Figure 2 – Energy price offered by utility companies 

To determine the relation between the COP and average 

power consumption in a datacenter, we applied the genetic-

algorithm-based power provisioning policy presented in 

reference [18] to find the maximum COP for different range of 

power consumption in a two-row rack setting (250 blade servers 

with 110KW peak power) using hot-aisle/cold-aisle cooling 

arrangement. The results are reported in Figure 3. 

 
Figure 3 – Dependence of COP on average power consumption 

It can be seen that the COP can be modeled as a linear 

function of the average power consumption with acceptable 

error. To approximate the COP function for the whole 

datacenter, the power coefficient in this linear estimation is 

multiplied by             . This assumption is based on 

having multiple server rooms with capacity of 110KW each.   

Synthetic workloads are generated to be used in the GLB 

problem. Based on population distribution in US, applications 

are created in different time horizons and geographical 

locations. Application workload is changed according to the 

local time of its origination point. The application lifetime is set 

randomly based on uniform distribution between one and 16 

hours. The SLA parameters and costs for these applications are 

set based on the Amazon EC
2
 pricing scheme [26]. We used the 

SLA model presented in reference [16] to determine the SLA 

cost based on the amount of resources allocated to each VM. 

The minimum resource requirement for each VM is determined 

considering a target response time, a tolerable response time 

violation rate, behavior of the VM on the target server type, the 

round-trip time between VM location and target datacenter 

location, and the time required to transmit the typical packet in 

the incoming requests and outgoing responses. The penalty for 

an under-serviced request is set to be equal to the service price 

for one hour divided by the maximum number of requests that 

can violate the response time in each charge cycle. The 

migration cost is considered to be linearly related to the 

migration latency. The linear coefficient is set to be equal to the 

service price for one charge cycle divided by the worst possible 

migration latency (New York to California.)  

The baseline in our simulation is a case without geographical 

load balancing. For this scheme, each client is assigned to its 

nearest datacenter that has sufficient available resources. This 

scheme results in low VM migration cost if there are no 

resource contentions in the datacenters.  

To show the effectiveness of the proposed offline algorithm, 

we created workload for more than 100,000 clients across the 

US for a full day and determined the GLB solution by using 

proposed algorithm and baseline solution. The workload 

intensity, which is obtained by summing the minimum resource 

requirement for the active VMs, is reported in Figure 4. 

 
Figure 4 – The intensity of the workload as a function of time of the day 
captured by the total minimum resource requirement for active VMs 

The operational cost of the cloud system with the FDLB 

algorithm, the baseline algorithm, and FDLB-1 (a simplified 

version of FDLB) are presented in Figure 5. Note that FDLB-1 

constructively (i.e., epoch-by-epoch) determines the VM 

placement solution in order to reduce the run-time of the 

original solution. 

 
Figure 5 – Operational cost of the cloud in different epochs using different 

scheduling algorithms  

As can be seen, in the beginning of the day, performance of 

the baseline method is similar to that of FDLB algorithm but in 

peak workload hours, the total operational cost using the 

baseline algorithm increases significantly. The total operational 

cost of the cloud system for one day by using the FDLB 

algorithm is 40% less than that of the baseline algorithm and 5% 

better than that of the FDLB-1. The run-time of FDLB, FDLB-1 

and baseline on a 2.66GHz quad-core HP server are 466, 69 and 

7 seconds, respectively. Share of different elements of the 

operational cost using FDLB algorithm is shown in Figure 6. As 

can be seen, FDLB solution avoids VM migration in light 

workload but VM migration is used under heavy workload 

situations to reduce the PUE, increase the share of renewable 

energy, and decrease the energy cost.  

 
Figure 6 – Share of energy, SLA and migration cost in operational cost in 
different epochs 
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To show the effectiveness of the proposed online solution, 

we created a four-day scenario. To be able to apply the 

prediction about the background workload from first day of the 

online algorithm to the other days, we considered similar 

situations for all four days. The predicted parameters (discussed 

in section VI) are deviated from real values by up to 10% to 

model the misprediction phenomenon. The number of created 

VMs in each day is at least 100K. Normalized total operational 

costs of each day using the online and offline FDLB algorithms 

and the baseline method are reported in Table I. As can be seen, 

the online version of the algorithm works 8% worse than the 

complete and perfect information scenario in the offline version 

but it is 7% better than only considering the current epoch 

(FDLB-1) and 27% more effective than not considering the load 

balancing opportunity. Moreover the efficacy of the online 

algorithm improves by updating the background workload after 

the first day. Run-time of the online algorithm (after background 

workload preparation) ranges from 10 to 80 seconds for each 

epoch on a 2.66GHz quad-core HP server. 

TABLE I. NORMALIZED TOTAL OPERATIONAL COST OF THE CLOUD DURING FOUR 

DAYS USING DIFFERENT LOAD BALANCING ALGORITHMS 

Day 
Normalized total OPEX for full day 

Online 
FDLB 

Offline 
FDLB 

Online 
FDLB-1 

Baseline 

First day 1 0.91 1.02 1.24 

Second day 1 0.92 1.08 1.29 

Third day 1 0.92 1.08 1.29 

Fourth day 1 0.94 1.09 1.31 

Overall 1 0.92 1.07 1.27 

It is worth noting that load balancing for online service 

applications is more effective when there are some resource 

contentions, different energy prices, or varying renewable power 

availabilities in datacenters’ site. This fact is noticeable in 

Figure 5. The difference between FDLB and baseline results 

increases by having heavier workload in the cloud system. In 

contrast, decreasing the number of clients to half (50K) reduces 

the benefit of performing load balancing in the mentioned 

settings to 8% and 6% for the offline and online algorithms. 

VIII. CONCLUSION 

This work focused on the load balancing problem for online 

service applications considering a distributed cloud system 

comprised of geographically dispersed, heterogeneous 

datacenters. The problem formulation and a novel solution were 

presented and simulation results demonstrated the effectiveness 

of the proposed algorithms. The effectiveness of GLB was 

shown to be greater for high workloads and different electrical 

energy prices in datacenters’ site. A possible future work is to 

combine the GLB problem for online applications with offline 

computation tasks scheduling problem to increase the benefit of 

the load balancing. Another possible future work is to consider 

GLB problem with multi-tier applications, which create multiple 

dependent VMs. 
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