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Abstract—Load demand scheduling of electricity consumers is 

an effective way to alleviate the peak power demand on the elec-
tricity grid and to combat the mismatch between generation and 
consumption. In this paper, we consider a scenario where multi-
ple users cooperate to perform load demand scheduling in order 
to minimize the electricity generation cost. With the help of a 
central controller in the grid, a globally optimal solution can be 
achieved. However, this centralized solution may not always be 
feasible since it requires a huge amount of communication and 
the grid may not be equipped with such a central controller at all. 
Therefore, we propose a distributed load demand scheduling 
algorithm where each end user schedules its own tasks based on 
the partial information provided by other users. Simulation re-
sults show that this distributed load demand scheduling is able to 
achieve near-optimal solutions that has very little performance 
degradation compared to the centralized method. 

I. INTRODUCTION 
One serious challenge we face in the electrical grid is the 

mismatch between electricity consumption and generation. On 
the consumption side, electric demand ramps up significantly 
during certain hours of a day (a.k.a. peak hours), and this peak 
consumption is increasing rapidly. On the generation side, it is 
very cost-ineffective for the utility companies to enhance their 
generation capacity to meet the increasing peak need. However, 
most of the generation capacity is wasted during off-peak 
hours. Typically in United States, the energy consumption is 
greater than 90% of the generation capacity in only 5% of the 
time [3]. 

An effective method to avoid the significant expense of in-
creasing the generation capacity is to perform demand side 
management (DSM) [1], which aims at matching the consum-
ers' electricity demand with the generation profile or reducing 
the peak demand. In order to incentivize end users to perform 
DSM, utility companies typically employ different pricing pol-
icies with higher unit price during peak hours and lower unit 
price during off-peak hours [4][5]. The DSM is mutually bene-
ficial as the end users lower their electricity bills and the utili-
ties companies reduce electricity generation cost. 

There are two prevalent methods to perform DSM: load 
demand scheduling and energy storage system deployment. 
The former performs DSM by shifting end users' load task 
from peak hours (with higher unit price) to off-peak hours 
(with lower unit price). The latter equips home users with ener-
gy storage systems, which get charged during off-peak hours 
and supply power to the load during peak hours. In this way the 
power demand on the grid is also shifted away from the high-
price hours effectively. 

The most recent technology innovations in the field of 
smart grid provides new opportunities for DSM [2]. The con-
struction of the communication infrastructure connects together 
all the generation facilities and household appliances in a cer-
tain area, and allows them to efficiently and promptly exchange 
information. Thanks to this communication network, both gen-
eration facilities and end users are more responsive to each 
other, and DSM can be performed in a more proactive manner. 

In the current electricity grid, most end users only care 
about their own expenses. However, there are a couple of cases 
where the end users are cooperative. For example, when all the 
end users are in the same micro-grid and the electric energy 
generation facilities of this micro-grid are jointly owned by 
these users. The goal for the end users are thusly to minimize 
the cost to generate electricity to satisfy their demand. In addi-
tion, cooperation is also needed when a group of end users be-
longs to a single financial entity [9]. Another scenario is pro-
posed by Mohsenian-Rad, et al. in [14], where all the end users, 
even when each of them pays for its own electricity bill, will 
become cooperative under a carefully designed pricing policy. 

In this paper, we look at the DSM problem of a smart-grid 
system consisting of multiple cooperative end users and an 
electricity energy provider. The end users are cooperative since 
they share the same goal which is to minimize the overall elec-
tricity generation cost. A globally optimal solution can be 
achieved with a central controller deployed in the grid. Howev-
er, the centralized approach may not be feasible as it has huge 
communication requirements: each user needs to send the in-
formation of their tasks (e.g., power demand profile, arrival 
time, deadline, etc.) to the central controller, and after schedul-
ing, the controller sends back the detailed scheduling infor-
mation of each task. Moreover, in some cases the grid may not 
have such a central controller. To address this issue, we pro-
pose an effective iteration-based distributed load scheduling 
algorithm that can be implemented in each end user. In each 
iteration every user schedules its own tasks and then broadcast 
its updated power demand profile to other users. The distribut-
ed algorithm converges very fast and has comparable perfor-
mance with the centralized solution. 

The rest of this paper is organized as follows. Section II 
discusses the related work on DSM. In Section III we present 
the system model. The DSM problem is then formulated math-
ematically in Section IV. The proposed distributed scheduling 
algorithm is proposed in Section V. Section VI demonstrates 
the simulation results and Section VII concludes the paper. 

II. RELATED WORK 
Load demand scheduling is one of the methods to reduce 

the electricity bills of end users. Mohsenian-Rad et al. in [6] 
and Conejo et al. in [7] formulate the energy consumption op-
timization problem of one single user and solve the problem 
based on effective predictions of future electricity prices. 
Hatami et al. in [9] consider a group of users sharing a single 
electricity bill and solved the problem of minimizing the bill 
under quasi-dynamic pricing policies for both continuous-time 
case and time-slot based case. Goudarzi et al. in [10] solve a 
similar problem by designing branch and bound-based exact 
algorithms and force-directed heuristic algorithms. Caron et al. 
in [8] consider a multi-user system under dynamic pricing poli-
cy and analyzed different scenarios based on the amount of 
information available to each user. 

In addition to load task scheduling, DSM can also be done 
by incorporating electrical energy storage systems in residential 



households. Chiu et al. in [11] propose a management policy 
for the energy storage systems based on the current unit energy 
price and take system uncertainty and the physical constraints 
of the storage system into account. Wu et al. in [12] utilize the 
electric vehicles as distributed storages and employ a game 
theoretic approach to achieve optimal frequency regulation. In 
[13] Zhu et al. focus on the design of a residential storage sys-
tem and propose a methodology to maximize the profit over the 
system's lifetime. Wang et al. in [14] propose a hierarchical 
control algorithm for managing storage systems based on the 
prediction of load consumption and PV power generation. 

There are also some research papers that investigate how 
the utility companies can take advantage of DSM to maximize 
their profit or to minimize the electricity generation cost. In 
[15], Mohsenian-Rad et al. propose a game theoretic model for 
optimizing the electricity generation cost. The Nash equilibri-
um of this game is proved to be unique and optimal for all us-
ers. Yue et al. in [16] propose a dual-pricing policy for utility 
companies to flatten the aggregated power demand profile. Cui 
et al. study how utility companies can maximize their profits in 
a oligopolistic energy market in [17] and propose a game theo-
retic model to determine electricity prices for non-cooperative 
utility companies in [18]. 

III. SYSTEM MODEL 

  

 
Figure 1. System architecture. 

As shown in Figure 1, the system model in this paper con-
sists of an electric energy provider (the power supply and the 
grid) and a group of cooperative end users. The electric energy 
provider supplies electricity to all the end users and they share 
the electricity bill which is the same as or proportional to the 
electricity generation cost. The end users are cooperative as 
they all have the same objective: to minimize the total electrici-
ty generation cost. 

The detailed model of the end users' energy demand and the 
electricity generation cost is presented below. 

A. Load Task Model 

 
 

 

 

 
Figure 2. Home system structure. 

In the proposed system, each user may be a single family 
house, an unit in a multi-family house, or an office building, 
etc. Each user has a number of electrical appliances connected 
to the energy provider via a smart meter, as shown in Figure 2. 

We define a task as the usage of an electrical appliance for 
a certain period of time. Each user 𝑢𝑖 has a set of tasks �𝑇𝑖 ,𝑗� to 
be executed. The following parameters are used to describe 
each task 𝑇𝑖,𝑗: 
• 𝑎𝑖,𝑗: the arrival time (i.e., the earliest time to start executing 

the task); 
• 𝑑𝑖,𝑗: the deadline (i.e., by which time the task must be fin-

ished); 

• 𝑙𝑖,𝑗: the duration (length); 
• 𝑝𝑖,𝑗(𝑡): the power demand profile, where 0 ≤ 𝑡 < 𝑙𝑖,𝑗. 

For a task 𝑇𝑖,𝑗 , all the parameters are given a priori. The 
DSM algorithm needs to determine the start time 𝑠𝑖,𝑗  of each 
task to minimize the total energy cost. 𝑠𝑖,𝑗 should conform to 
the arrival time and deadline constraint: 

𝑎𝑖,𝑗 ≤ 𝑠𝑖,𝑗 ≤ 𝑑𝑖,𝑗 − 𝑙𝑖,𝑗 
Obviously, a task can be scheduled for execution at different 
start times if and only if the duration of a task satisfies: 

𝑙𝑖,𝑗 < 𝑑𝑖,𝑗 − 𝑎𝑖,𝑗 
Note that in our system model we consider a time span of one 
day and divide it into multiple time slots. 

B. Electricity Generation Cost 
We denote the cost to generate the amount of energy 𝐸 at 

time slot 𝑡 as 𝐶𝑡(𝐸). This cost function may be different for 
different time slots. Assuming that the total energy consump-
tion during time slot 𝑡 is 𝐸𝑡, we can calculate the total electrici-
ty generation cost for one day by 

� 𝐶𝑡(𝐸𝑡)
𝑡

 

The cost function is usually convex due to the increasing mar-
ginal cost for the energy provider to generate electricity. 

IV. PROBLEM FORMULATION 
Given the above system model, we formulate the multiple 

cooperative end users' load scheduling problem (referred to as 
MCLS hereinafter) as follows. 
Given:  
 The electricity generation cost function of each time slot 

𝐶𝑡(𝐸); 
 A group of cooperative users {𝑢𝑖}, 𝑖 = 1,2, … , 𝑘, where 𝑘 is 

the total number of users; 
 The task set of each user �𝑇𝑖,𝑗�, where 𝑇𝑖,𝑗 indicates the 𝑗-th 

task of user 𝑢𝑖 . 𝑗 ∈ {1,2, … ,𝑁𝑖} and 𝑁𝑖  is the total number 
of tasks of user 𝑢𝑖; 

 The parameters of each task: arrival time 𝑎𝑖,𝑗, deadline 𝑑𝑖,𝑗 , 
duration 𝑙𝑖,𝑗, and power demand profile 𝑝𝑖,𝑗(𝑡). 

Find: 
 The start time 𝑠𝑖,𝑗 of each task for every user. 
Minimize: 
 The overall electricity generation cost: 

� 𝐶𝑡(𝐸𝑡)
𝑡

 

where 
𝐸𝑡 = � � 𝑝̂𝑖,𝑗(𝑡 − 𝑠𝑖,𝑗)

𝑗𝑖
 

and 

𝑝̂𝑖,𝑗(𝑡 − 𝑠𝑖,𝑗) = �𝑝𝑖,𝑗�𝑡 − 𝑠𝑖,𝑗�, if 0 ≤ 𝑡 − 𝑠𝑖,𝑗 < 𝑙𝑖,𝑗
0,                                              otherwise

 

Subject to: 
 The scheduling constraints of each task: 

𝑎𝑖,𝑗 ≤ 𝑠𝑖,𝑗 ≤ 𝑑𝑖,𝑗 − 𝑙𝑖,𝑗 
We prove that the MCLS problem is NP-complete (NPC). 

Proof: 
1) The solution to the MCLS problem can be verified in poly-
nomial time (MCLS ∈ 𝑁𝑃): 

It is obvious that we can verify the solution using the above 
equations in polynomial time. Therefore, MCLS ∈ 𝑁𝑃. 



2) For a NPC problem L, L is polynomial reducible to the 
MCLS problem: 

We adopt a well-known NPC problem, the set partitioning 
problem [19] in our proof. For a given set of 𝑁 numbers {𝑛𝑖}, a 
set partitioning problem L is to partition the set into two subsets 
𝑆1 and 𝑆2 so as to minimize the difference between the sum of 
numbers in each subset, calculated by 

�� 𝑛𝑖
𝑖∈𝑆1

−� 𝑛𝑖
𝑖∈𝑆2

� 

To reduce the set partitioning problem to a MCLS problem, 
we consider two time slots and one user. Assume this user has 
𝑁 tasks. For all the tasks of this user, the arrival time is zero, 
the deadline is the end of the second time slot, the duration is 
one time slot, and the power demand of each task equals 𝑛𝑖. In 
this case, each task can be scheduled to either the first time slot 
or the second one. The amounts of energy consumption in the 
two slots are calculated by 

𝐸1 = � 𝑛𝑖
𝑠𝑖=1

,𝐸2 = � 𝑛𝑖
𝑠𝑖=2

 

Assume the cost functions are convex and the same for 
each time slot. Because of the convexity of the cost functions, 
the overall electricity generation cost is minimized when the 
difference between 𝐸1  and 𝐸2  is minimized. The optimal task 
scheduling of this MCLS problem is the same as the optimal 
set partition of the problem L. 

Combining 1) & 2), the MCLS problem is NP-complete.  ∎ 

The NP-completeness of the proposed MCLS problem im-
plies that it cannot be solved optimally with polynomial time 
complexity, thereby motivating us to find effective heuristic 
algorithms that can achieve near-optimal solutions with ac-
ceptable complexity. 

The MCLS problem can be solved in either a centralized or 
a distributed fashion. In a centralized method, there is a central 
controller in the electricity grid. All users send their tasks' spec-
ification to the central controller at the beginning of a day. The 
central controller then finds out the scheduling solution (i.e., 
the start time of the users' tasks) and send the solution back to 
the end users. In a distributed method, each user determines the 
best scheduling solution for its own tasks, based on the infor-
mation provided by other end users. 

Centralized and distributed methods both have pros and 
cons. Centralized methods tend to achieve better solutions be-
cause the central controller has the complete information of all 
the end users' tasks. However, they require a large amount of 
communication since each user has to send to the controller the 
information of all its tasks. Moreover, when there is no such 
central controller in the electricity grid, a centralized method 
will be infeasible. On the contrary, distributed methods require 
less amount of communication and are able to harness the 
computing power distributed at each end user. 

While this paper focuses on designing a good distributed 
scheduling algorithm, a centralized scheduling algorithm is 
proposed as the performance upper bound to evaluate the dis-
tributed scheduling algorithm. 

V. PROPOSED SCHEDULING ALGORITHM 
This section first presents a centralized scheduling algo-

rithm for the system as the performance upper bound, and then 
proposes an efficient distributed algorithm. 
A. Centralized Scheduling Algorithm 

We adopt search-based simulated annealing algorithm for 
the centralized DSM. Simulated annealing algorithm is an ef-

fective heuristic algorithm for finding a good approximation of 
the global optimal solution. At each iteration of the simulated 
annealing, we define a move as follows: We find a neighboring 
state by randomly select one task with more than one feasible 
start time (i.e., 𝑎𝑖,𝑗 < 𝑑𝑖,𝑗 − 𝑙𝑖,𝑗) and change its start time 𝑠𝑖,𝑗 to 
a new feasible start time (i.e., 𝑎𝑖,𝑗 ≤ 𝑠𝑖,𝑗′ ≤ 𝑑𝑖,𝑗 − 𝑙𝑖,𝑗  and 
𝑠𝑖,𝑗 ≠ 𝑠𝑖,𝑗′ ). The cost 𝑐′  of the new power demand profile is 
calculated and compared to the current cost 𝑐. If 𝑐′ < 𝑐, mean-
ing this move is a downhill move (which results in less total 
cost), we accept this move, and continue to execute the next 
iteration. Otherwise, i.e., in case of an uphill move, the proba-
bility of making this move 𝑞 is given by the acceptance proba-
bility function, defined by 

𝑞 = 𝑒−(𝑐′−𝑐)/𝐾  
Since 𝑐′ ≥ 𝑐 in the case of an uphill move, the acceptance 

probability 0 < 𝑞 < 1 . It decreases with the decrease of 𝐾 , 
a.k.a. the temperature in the simulated annealing algorithm. We 
gradually decrease the temperature 𝐾 (a.k.a. cooling down) to 
make the solution converge. The minimum cost is recorded 
during the simulated annealing process. The pseudo code of the 
proposed algorithm is shown below. 

Simulated Annealing-Based Centralized Algorithm 
Initialize the task scheduling by setting the start time 𝑠𝑖,𝑗 = 𝑎𝑖,𝑗 
for all 𝑖 = 1,2, … , 𝑘 and 𝑗 = 1,2, … ,𝑁𝑖  
Record minimum cost 𝑐min as the cost of the initialized task 
scheduling 
For each annealing step 

Randomly pick a new start time of a random task 𝑠𝑖,𝑗′  
Calculated the cost of the new profile 𝑐′ 
If 𝑐′ < 𝑐 

Accept this move 
Check if the new cost is smaller than the minimum 
cost 𝑐min; if so, update 𝑐min 

Else 
Accept this move by probability 𝑞 = 𝑒−(𝑐′−𝑐)/𝑇  

Endif  
Decrease temperature 𝐾 

EndFor 
Return 𝑐min, the minimum cost found during the process 
EndAlgorithm 

B. Distributed Scheduling Algorithm 
We propose an iterative algorithm for the distributed sched-

uling method. Each iteration contains a scheduling phase and a 
communication phase. In the scheduling phase, each user 
schedules all its tasks to minimize the overall cost estimated by 
this user based on other users' power demand profiles. In the 
communication phase, each user broadcasts its updated power 
demand profile to other users according to the current schedul-
ing of its own tasks. The iteration stops when the aggregated 
profile converges, i.e., when difference of the profiles achieved 
in two consecutive iterations is smaller than a threshold value. 

A naïve approach for a user in the scheduling phase is to 
compute the best scheduling for each task of this user so that 
the overall energy cost is minimized assuming other users' 
power demand profile remains the same. However, this as-
sumption is not valid since other users are simultaneously up-
dating their scheduling during the same iteration as well. What 
is worse, this naïve approach may not converge as shown in the 
following example. 

Assume there are two time slots and two users each with 
one task, as shown in Figure 3. The unit energy cost is a con-



vex function of energy consumption in the time slot. One can 
easily tell that the optimal solution is to avoid collision of the 
two tasks, i.e., place one task in Time Slot 0 and another in Slot 
1. But the naïve approach may result in an infinite loop. 

Initially, the two tasks are both scheduled to Time Slot 0. In 
the first iteration, the users exchange information of their cur-
rent scheduling results. Then in the scheduling phase, both us-
ers re-schedule their tasks to Time Slot 1 to avoid collision. 
However, it results in a new collision as both tasks are now in 
Time Slot 1. In the next iteration both tasks are rescheduled to 
Time Slot 0 and becomes an infinite loop. 

User 2's 
Task

User 1's 
Task

Iteration 1 Iteration 2

User 2's 
Task

User 1's 
Task

Time 
Slot 0

Time 
Slot 1

Time 
Slot 0

Time 
Slot 1

 
Figure 3. An example of infinite loop in the naïve approach. 

We employ two techniques to overcome the above defect. 
The first technique is to use a exponential predictor to predict 
other users' power demand profile in the next iteration. Denote 
the prediction result of other users' power profile as 𝑷𝒓 and the 
actual profile after scheduling in each iteration as 𝑷𝒂. In each 
iteration we update the prediction by 

𝑷𝒓 ← 𝛼𝑷𝒓 + (1 − 𝛼)𝑷𝒂 
where 𝛼 is a parameter in the exponential predictor. 

The second approach is to reschedule each task only with 
some probability instead of always rescheduling it to the place 
with minimum cost. The probability 𝜀 to reschedule task 𝑇𝑖,𝑗 is: 

𝜀 = 1 − 𝑟� 𝑝𝑖 ,𝑗(𝑡)
𝑡

 

where 𝑟 is the reluctance coefficient. A task is less likely to be 
rescheduled with a greater value of 𝑟. In this way the probabil-
ity of task collision is reduced. The algorithm starts with a 
small value of 𝑟 to explore the possible optimal scheduling, and 
the convergence of the distributed algorithm can be guaranteed 
by gradually increasing 𝑟 after each iteration. 

The pseudo code for the distributed algorithm executed 
separately by each user is shown below: 

Iterative Distributed Algorithm 
Initialize other people's actual power demand profile to 𝑷𝒂 
Initialize power demand profile prediction 𝑷𝒓 to zero 
While difference of 𝑷𝒂 between two iterations larger than 𝑡ℎ 

// Scheduling Phase 
Use 𝑷𝒓 as other users' power demand profile 
For each task 𝑇𝑖,𝑗 

For each 𝑠𝑖,𝑗 from 𝑎𝑖,𝑗 to 𝑑𝑖,𝑗 − 𝑙𝑖,𝑗 
Calculate the electricity generation cost of the 
profile if task 𝑇𝑖,𝑗 is scheduled to start at time 𝑠𝑖,𝑗 

EndFor 
Find 𝑠𝑖,𝑗  which minimizes the cost 
Update 𝑠𝑖,𝑗with a probability of 𝜀 

EndFor 
// Communication Phase 
Broadcast the power demand profile to other users 
Upon receiving other users' profile, calculate 𝑷𝒂 
Update prediction 𝑷𝒓 
Increase the reluctance coefficient 𝑟 

EndWhile 
EndAlgorithm 

VI. SIMULATION RESULTS 
A. Simulation Setup 

In the following simulations, we set the number of time 
slots to be 48, which means that the length of each time slot is 
half an hour. We generate eight test cases using a stochastic 
model. The parameters of each task is derived from commonly 
used electrical appliances [20]. TABLE I. summarizes the 
number of users and the average number of tasks each user has 
for all eight test cases. 

TABLE I.  SPECIFICATION OF EACH TEST CASE 

Test Case # Number of Users Average Number of Tasks 
Per User 

1 50 10 
2 50 105 
3 100 51 
4 100 104 
5 100 9 
6 200 9 
7 200 48 
8 500 48 

The electricity generation cost function we use for each 
time slot is a quadratic function: 

𝐶𝑡(𝐸) = 𝐴𝑡𝐸2 + 𝐵𝑡𝐸 
The baseline algorithms are: 
1) As-soon-as-possible algorithm (ASAP): each task is 

scheduled to start at its arrival time. 
2) As-late-as-possible algorithm (ALAP): each task is 

scheduled so that it finishes right before deadline. 
3) Centralized simulated annealing (SA) proposed in Sec-

tion V.A. 
4) Distributed scheduling without cooperation (NO-COOP): 

each user runs the simulated annealing algorithm to schedule 
its own tasks with no information on other users' tasks. 

B. Performance Comparison 
Figure 4 shows the power demand profile achieved by dif-

ferent algorithms for test case 3. As can be seen, the SA sched-
uling algorithm achieves a very desirable profile as its power 
demand during peak hours is flat. The profile of the proposed 
distributed algorithm is also much better than that of ASAP, 
ALAP and NO-COOP since it has a lower peak and less fluctu-
ations. Figure 5 shows the performance of different load de-
mand scheduling algorithms normalized to the SA algorithm's 
outcome. The centralized SA algorithm achieves the best per-
formance in all test cases as expected. The performance of the 
proposed distributed algorithm outperforms the ASAP, ALAP 
and NO-COOP scheduling algorithm and is only 0.67% worse 
than that of the SA scheduling algorithm. 

 
Figure 4. Power profiles of different algorithms for test case 3. 

C. Convergence Speed 
In the proposed distributed algorithm we use the reluctance 

coefficient to ensure convergence. TABLE II. shows the num-
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ber of iterations the proposed algorithm takes for each test case. 
As can be seen in the table, the number of iterations are all very 
small and, more importantly, does not scale up with the number 
of users. 

TABLE II.  NUMBER OF ITERATIONS IN THE PROPOSED ALGORITHM 
Test Case # 1 2 3 4 5 6 7 8 
Number of Iterations 5 8 10 17 6 7 8 7 

Figure 5 shows how the increment amount of the reluctance 
coefficient 𝑟 influences the convergence speed and the perfor-
mance of the proposed distributed algorithm (normalized to the 
SA algorithm's outcome). As shown in the figure, the number 
of iterations increases as the increment step size of the reluc-
tance coefficient becomes smaller, but the performance of the 
distributed algorithm gets improved. When the increment step 
is small enough (0.01), the performance of the proposed algo-
rithm is almost identical to the centralized SA algorithm. 

 
Figure 5. Convergence speed and performance as a function of the reluctance 

coefficient increment step size. 

VII. CONCLUSION 
In this paper, we consider the load demand scheduling 

problem of multiple cooperative end users. The objective of 
these end users is to minimize the electricity generation cost. 
Although a centralize method is able to achieve an optimal 
solution, it may not always be feasible due to high communica-
tion requirement and hardware overhead. Therefore we propose 
an iterative distributed load demand scheduling algorithm. The 
algorithm is conducted by each end user separately and the 
communication between different users only occurs at the end 
of each iteration. Simulation results show that the proposed 
distributed load demand scheduling algorithm converges fast 
and is able to achieve near-optimal results with very little per-
formance degradation compared to the centralized method. 
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Figure 6. Normalized performance of different load demand scheduling algorithms. 
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