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A Markovian Decision-based Approach for Extending 
the Lifetime of a Network of Battery-Powered Mobile 

Devices by Remote Processing 
 

Peng Rong and Massoud Pedram 
 
Abstract ‒ This paper addresses the problem of extending the lifetime of a battery-
powered mobile host in a client-server wireless network by using task migration and 
remote processing. This problem is solved by first constructing a stochastic model of the 
client-server system based on the theory of continuous-time Markovian decision 
processes. Next the dynamic power management problem with task migration is 
formulated as a policy optimization problem and solved exactly by using a linear 
programming approach. Based on the off-line optimal policy derived in this way, an on-
line adaptive policy is proposed, which dynamically monitors the channel conditions and 
the server behavior, takes into account real-time constraints, and adopts a client-side 
power management policy with task migration that results in optimum energy 
consumption in the client. Experimental results demonstrate that the proposed method 
outperforms existing heuristic methods by as much as 35% in terms of the overall energy 
savings. 
 
Key Words ‒ Client-server system; remote processing; network lifetime; Markovian decision 
processes. 
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1 INTRODUCTION 
Extending the battery lifetime is one of the most critical and challenging problems in 

mobile battery-powered systems. Dynamic power management (DPM), which refers to a 

selective shut-off or slow-down of the idle or underutilized components, has proven to be 

a very effective technique in reducing power consumption of such systems. However, an 

implicit assumption in all of the previous DPM works (Benini et al. [1999] and Qiu et al. 

[2001]) is that local tasks of a mobile device are executed on the device itself. This is true 

if the mobile device has no communication capabilities with other mobile devices. 

However, when we consider a mobile host within a mobile network, which carries a 

wireless LAN card and can interchange data with other mobile hosts or fixed base 

stations over a wireless channel, the situation becomes quite different. A host with heavy 

workload may ask other hosts or the base station to help it reduce its workload by 

dispatching local tasks to these remote sites for processing. In this way, the mobile host 

may save power and extend its service lifetime.  

Many key applications running on mobile platforms can benefit from task migration 

and remote processing. These applications include image processing, e.g., target 

detection and recognition used in robot control (Kremer et al. [2001]), voice recognition 

(Smailagic et al. [2002]), and large-scale numerical computations (Rudenko et al. [1998]). 

The effectiveness of the remote processing technique is limited by the fact that data 

transmission over wireless channel results in additional power consumption. Energy 

savings on the local host is achieved only if the total energy for transmitting a task and 

receiving the result is less than the energy consumed for local execution of that same task. 

The rather large energy dissipation cost of wireless communication in mobile network of 

battery-powered devices makes the problem of deciding whether to execute a local task 

on the local host or to dispatch it to another mobile host for remote processing a very 

important one. In effect, energy-conscious policies must carefully consider the energy 

tradeoff between communication and computation and the task execution time from the 

viewpoint of the local host as well as the total energy dissipation for executing a task 

from the viewpoint of the network of mobile hosts. 

A number of research results related to this problem have been reported in the 

literature. Experiments performed in Smailagic et al. [2002] and Rudenko et al. [1998] 

demonstrated the potential of remote processing for significant power savings in a 

number of real time tasks. The results of one experiment reported in reference Rudenko 

et al. [1998] are depicted in Figure 1. In this experiment, the authors compared the mobile 

computer’s energy consumptions for local and remote execution of the Gaussian solution 
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of a system of linear equations. For remote execution, the entire coefficient matrix is 

shipped and the solution vector returned. It was observed that when the (linear equation) 

system size is around 500×500, the cost for moving the computation is close to the cost 

of local execution, but as the system size increases, the energy saving induced by remote 

execution becomes larger, e.g., energy savings is as large as 45% with a system size of 

1000×1000. Based on CPU measurements, Othman et al. [1998] proposed an adaptive 

decision-making policy for a repetitive task. A remote processing framework was 

proposed in Rudenko et al. [1999], which supports process migration at the operating 

system level. This adaptive policy differs from that proposed in Othman et al. [1998] in 

that it can filter out the transient noise. Reference Kremer et al. [2001] proposed a 

compilation framework for remote processing, which can identify candidate remote 

computations within a single program. Unfortunately, these works do not consider any 

timing constraints on the tasks and assume that the user must be able to cope with any 

level of additional delay that may be introduced by remote processing. This limitation 

makes these techniques unsuitable for real-time applications, where violation of timing 

constraints may cause unacceptable loss in quality of service.  

 

Figure 1. Power savings for remote execution of Gaussian solution of a system of linear 

algebraic equations. 

IEEE 802.11 protocol supports two types of mobile networks: peer-to-peer 

architecture (ad-hoc mode) and client-server architecture (infra-structure mode). In ad-

hoc network, there is no base station and communication among mobile hosts takes place 

without the need for a base station. In this case, the major issue is to balance the 

remaining energy resources of all mobile hosts so as to maximize the ad-hoc network 
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lifetime. This problem – although interesting - is different from the problem that we are 

addressing here for the infra-structure mode and is beyond the scope of the present paper. 

This paper targets a mobile device providing real time services in a client-server wireless 

network. The mobile battery-powered device (client) can communicate with and possibly 

migrate tasks to the “wall-powered” base station (server). Note that a client’s tasks may 

in general be heterogeneous. Indeed, in the proposed framework, tasks are statistically 

modeled by parameters describing their expected arrival rate and service time on the 

client, and expected migration time to the server.  

The article first presents a new Markovian Decision Process-based DPM framework 

for such a network. The proposed stochastic model is used for minimizing the power 

consumption of the mobile host by using remote processing while meeting real-time 

constraints.  A preliminary version of this paper was published in the Proceedings of the 

40th Design Automation Conference. Compared to the conference version, this article has 

the following additional content: 

1. Detailed derivations and discussion of key results 

2. Improvements to the Server Model and a flow diagram of the RPR acceptance 

and execution on the Server 

3. Changes to the problem formulation for the offline policy including significant 

revision of the formulation of the Delay Constraint, which enhances the 

optimality of the result by eliminating the empirically selected parameter Dc 

4. Extension of the online policy to the G/G/1 server model 

5. Discussion of why and where to add a security-enhancement state to the Client 

Model in order to protect migrated tasks from being eavesdropped or altered. 

The remainder of this article is organized as follows.  Related work and background 

are provided in Section 2. In Section 3, details of the proposed DPM framework are 

described. In Section 4, stochastic models of the client, the wireless channel, and the 

server are provided. In Section 5, the energy optimization problem is formulated as a 

mathematical program and two DPM policies are presented.  Experimental results and 

conclusions are given in Sections 6 and 7, respectively.  

 

2. BACKGROUND 
Research on wireless communication has demonstrated that the multi-path fading and 

shadowing (slow fading) effects in a wireless channel may significantly degrade the 

signal-to-noise ratio, increase the error rate, and thus cause a large amount of delay and 

energy consumption for re-transmitting the corrupted packets. So when determining an 
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optimal policy for the client, a detailed and accurate model of a wireless channel should 

be constructed and used.  

A (controllable) continuous-time Markov decision process, c.f. Feinberg et al. [2002], 

(CTMDP) is defined with a discrete state space; a generator matrix, where an entry 

represents the transition rate from one state to another; an action set; and a reward 

function. In CTMDP, the generator matrix is a parameterized matrix that depends on the 

selected action. An irreducible CTMDP has a unique limiting distribution that is 

independent of the initial conditions. 

A complete power-managed system may comprise of different components, each with 

its own functionality and purpose. A simple example of one such system is depicted in 

Figure 2. Here, the system consists of three components: service requestor, service queue 

and service provider. The power manager gathers state information from the service 

requestor and service queue, and also controls the behavior of the service provider based 

on the utilized policy in order to reduce the overall energy consumption. To model this 

power managed system, each component is first modeled by a CTMDP. Next the state set 

of the complete system is obtained as the Cartesian product of the state set of each 

component minus the set of invalid states. By using the method of Qiu et al. [2001], the 

generator matrix of the whole system can be generated from the generator matrices of its 

components by using the tensor sum and/or product operations. 

 

Figure 2. Simplified model of a power-managed system. 

To increase the readability of the paper, we provide a summary of all key notation and 

definitions next.  

Notation Definition 

D A user-specified upper bound on the average task delay 

Th 
A user-specified upper bound on the percentage of task requests which are 

denied by the service provider. This is also equal to the task loss rate.  

λc Average rate of incoming tasks to the mobile client 

1 /μc Average service time of a task on the mobile client 
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1/μm Task migration time for remotely executed tasks 

wi State i of the wireless channel  

PERi Packet error rate in wi  

vi,j Transition rate from wi to wj 

1/μs Average service time of a task on the server 

λs,i Task incoming rate to the server in server-task generation state i 

Preject,i 
Rejection probability of the client’s remote process request (RPR) by the 

Server in server-task generation state i 

k Ratio of the processing speed of the mobile client to the server 

c 
Slack factor i.e., a constant factor by which the service time bound that is 

assigned to an RPR is larger than its execution time on the server 

x State of the whole power-managed system 

ax An action enabled in state x 

xa
xf  Frequency that state x is entered in and action ax is chosen   

xa
xγ  

Expected cost, i.e. energy consumed when the system is in state x and action  

ax is chosen 

, '
xa

x xP  
Probability that the next state of the power-managed system is x’ when its 

present state is x and action ax is chosen 

,
xa

x xσ ′  
Transition rate of the power-managed system from state x to state x’ when ax 

is chosen 

( , )ene x x′  Energy associated with a successful transition from state x to state x’ 

xa
xτ  

Expected length of time that the system will stay in state x when action ax is 

chosen 

CM CC
xf  

Frequency of a transition whereby the CP enters state CM from a system 

state x where the CP was in state CC  

CI CC
xf  

Frequency of a transition whereby the CP enters state CI from a system state 

x where the CP was in state CC 

xh  
Variable used in the second order cone programming formulation of the 

nonlinear optimization problem 

 

3. DPM FRAMEWORK 
The proposed DPM framework consists of three major components: the clients 

(mobile hosts), a server (base station) and a wireless channel which carries the 
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communication packets between the client and the server. It is assumed that the server is 

AC-powered and has a much larger computational capability than the client. We also 

assume that the client services only its own local tasks and receives no request for remote 

processing from the server. This is a reasonable assumption since the AC-powered high-

performance server is much more powerful from a processing point of view and has no 

energy limit, and thus it will execute its own tasks (in addition, it will execute tasks sent 

to it by the mobile hosts.) This also means that the server has all the hardware and 

software resources required to execute the tasks that are sent to it by the remote clients. 

Furthermore, for the same reasons, the server does not turn down any request for remote 

processing. 

When a client desires to execute a task on the server, it sends a remote process request 

(RPR) to the server with a required real time constraint. Because the server may be busy 

executing other tasks (some local, other remote tasks that have previously arrived), it may 

reject the RPR from the mobile host because it may have determined that it cannot meet 

the required time constraint for the remote task. This is the only case in which the server 

rejects an RPR, that is, the server never turns down an RPR for reasons of server-side 

energy saving. When the RPR is rejected by the server, the client will have to perform the 

task locally. However, at that point, the client has wasted some valuable resources 

(energy and time) trying to migrate a task to the server and because it has failed in doing 

so, it still has to perform the requested task locally. It is therefore essential for the energy 

efficiency of the client and for its performance to minimize the probability for its RPRs to 

be rejected by the server.  

The procedure/protocol for remote processing is explained next. 

1. Based on estimations of the cost of executing a task locally and the task rejection ratio 

by the server, the client decides to migrate the task to the server. This task is called a 

remote execution candidate (REC). The client calculates the timing constraint for the 

execution of the REC. 

2. The client sends an RPR to the server containing workload and timing constraint 

information about the REC. 

3. When the server receives the RPR, it checks the status of the tasks waiting on the 

server to see whether the timing constraint for the REC can be satisfied. If so, the 

server will accept the application, otherwise, it will reject the application. (The server-

side decision algorithm is explained in details in Section 4.3.) Whether or not the 

application is accepted, the server will inform the client of its decision by sending an 

acknowledgment (ACK) back to the client. Included in the ACK response are the 
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decision to accept or reject the RPR, and current status information about the server, 

i.e., the average incoming request rate and the average execution time of the tasks on 

the server side. 

4. If the client receives a positive (acceptance) response from the server, then it will start 

to migrate the REC to the server. Otherwise, the client will proceed to execute the 

task locally. 

5. When the client finishes the task migration step, it can immediately start processing a 

new task if one has arrived. 

6. When the server completes the task, it will store the result in its own memory and 

immediately inform the client that the computation result is ready by sending a task 

done (DONE) message to the client.   

7. If the client receives the DONE message from the server, then it will immediately 

contact the server and collect the computation result (RES). If the server does not see 

any activity from the client, then it will resend the DONE message at the next 

conference time. At that time, the client is guaranteed to be awake and therefore will 

receive the DONE message and will pick up the RES from the server. At the same 

time, if the client does not receive any message from the server and has not had a 

conference with the server since the last REC was sent off, then before the deadline 

for REC is expired, it will contact the server to pick up the RES. 1 

8. During the process of RPR negotiation (steps 1-3), REC handoff (step 4,5), and RES 

computation (step 6), and RES delivery (step 7), the client counts the number of 

packets that had to be re-transmitted due to unrecoverable errors in the received 

packets. This information will enable client to determine the wireless channel 

condition in real time.   

 

4. MODELING 
Because this paper focuses on the client-server architecture (i.e., the infra-structure 

mode of the IEEE 802.11b), we can assume that the mobile hosts (clients) in the network 

are independent of each other2 and therefore when a client learns about the status of the 

                                                           

1 This case actually means that the server finished the RES computation, send a DONE message to the client 
who was asleep and thus missed the server ACK. 

2 Other mobile hosts affect the target mobile host only because of packet collision in the wireless channel. 

In this paper, we treat this collision effect (which is transparently handled and minimized by MAC layer) as 

noise in the wireless channel. 
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server, it has all that it needs to make local decisions as to how it can improve its energy 

efficiency and thereby extend its battery lifetime. The client-server system is thus 

modeled by a joint CTMDP model, which is composed of CTMDP models of only three 

components: a single client, a wireless channel, and the server. 

4.1 Model of the Client 

We consider a (mobile) client that is continuously executing some real-time service 

processes for each incoming task. The QoS requirements for the client service are: 1) the 

average task delay is less than a predetermined value D; and 2) the task loss rate is less 

than a threshold Th. Different tasks differ in the task size which is exponentially 

distributed. It is assumed that the relationships between the task size and its execution 

time on the client and the migration time over an error-free wireless channel are known in 

advance (for example, through profiling). 

The model of the client is illustrated in Figure 3. It has three processors: Service 

Provider (SP), Conference Processor (CP), and Issue Processor (IP).  

IP

SQ

CQ Idle

CP

Migration

Sleep

Conference
RPR

Rejected
RPR

AcceptedStart

Idle

SP

Wait

Sleep

Busy

Finish
Start

P
QSR

Data flow
State transition

Finish

  

Figure 3. CTMDP model of a client. 

The SP represents the component of a mobile device that can provide service for the 

service requests (SR) (e.g. the CPU). The CP is in charge of negotiation with the server 

for remote processing and task migration. When an REC is selected, the CP first sends a 

request for remote processing to the server, which includes the basic information about 

the REC, such as its expected computational workload and the relevant timing constraint. 

When receiving an RPR, the server checks its own resources and workload to see 

whether or not it can finish the task in the required time. If the timing constraint can be 

met, the request is accepted; otherwise, it is rejected. If the CP receives an “Accept” 

response from the server, it starts to send off (migrate) the task to the server. After 
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completing the task migration, the CP can immediately start a new negotiation with the 

server for the next REC. When the server finishes the required job, it stores the RES in its 

own memory and waits for the client to get them back. If the CP receives a “Reject” 

response, it moves the rejected REC out of the Conference Queue (CQ) and inserts it into 

the Priority Queue (PQ). The tasks in the PQ have a higher priority in receiving service 

from the SP compared to other tasks in the normal Service Queue (SQ). This makes sense 

because these tasks have already been held back because of the “failed” attempt to 

migrate them to the server. A typical CP is a WLAN Card with Direct Memory Access 

(DMA) capability. Since it can transmit and receive data with very little CPU 

intervention, we assume that the CP and the SP can work independently of one another. 

When a new task is generated, the IP decides whether to service it locally or make it a 

REC, and therefore insert the incoming task into the SQ or CQ, respectively. The IP is a 

low complexity and power-efficient processor (e.g., a PIC processor). We assume its 

power consumption can be neglected in comparison to the SP and the CP. The IP is 

always awake waiting for the arriving tasks and deciding whether to treat them as local or 

REC’s. 3 

The definitions of the states of the SP are as follows.  

Busy (SB): a working state, where the SP service the tasks waiting in the SQ or CQ. 

Idle (SI): a full-power but non-functional state, during which the Power Manager (PM) 

may issue any of the following commands to the SP: Go-to-Busy, Go-to-Wait, Go-

to-Sleep, Stay-in-Idle. 

Wait (SW) and Sleep (SS): low power states. The SP in the Wait state has a higher 

power consumption compared to the Sleep state, but its transition to Busy or Idle 

state requires more time and energy.  

The detailed states of the CP are explained as follows: 

Idle (CI): State reached when an RPR negotiation is concluded with a “Reject” response, 

or when the RPR is accepted by the server and the client has completed the task 

                                                           

3 In this model, we assume all incoming tasks to the mobile client have the same priority. This is true when 

all tasks have similar real-time requirements. However, this model can be extended to handle multiple task 

priorities. In such a case, a set of SQ, CQ and PQ can be added in parallel for each priority class. Different 

timing constraints may be imposed to each queue set to reflect different real-time requirements. At the same 

time, precedence rules for task execution can be applied to these queues in order to ensure that tasks with higher 

priority are always executed first. A similar method has been adopted in reference Qiu et al. [2001]. 
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migration step. It is also the state in which the CP receives commands from the PM 

to determine whether to start a new negotiation, go to sleep, or stay in idle. 

Conference (CC): In this state, the client sends the RPRs to the server, waiting for a 

server response indicating acceptance or rejection of the current RPR. If the request 

is rejected, the CP goes to the Idle state and the REC is fetched out of the CQ and 

inserted into the PQ. If the REC is accepted, the CP goes to the Migration state.  

Migration (CM): This state is reached after an RPR is accepted by the server. In this 

state, the client sends all the data necessary for performing the task to the server 

through the wireless channel. When the data-sending process is concluded, the CP 

goes back to the Idle state and at the same time the migrated task is removed from 

the CQ.  

Sleep (CS): State reached when the PM decides to put the CP into the lowest power 

mode to save energy. In this state the front-end of the wireless LAN card is turned 

off, thus no communication from the server can be received.  

All of the state transitions of the CP are assumed to be either exponentially distributed 

(e.g., the transition from the Migration state to the Idle state) or instantaneous (the only 

case is for the transition from the Idle state to the Conference state.) 

It is worth noting that in the CP model, we do not explicitly create a state for 

receiving the data RES of an RPR that has been serviced by the server. The reason is 

twofold: i) The remote processing protocol/procedure described previously guarantees 

the transmission of computation RES from the server to the client; ii) It is more 

convenient from a modeling point of view to account for the time and power 

consumption overhead of receiving the data RES of an RPR in the Migration state.  

Another point worth mentioning is that moving tasks from the mobile client to the 

remote server may incur security and trust issues. Since addition of security-related 

features to an RPR is only required after it is accepted by the server and immediately 

before the task migration is commenced, one can simply add another state to the CP 

model to account for this activity. Referring back to Figure 3, the “security enhancement” 

state (SE) should be put between the CC state and the CM state. The “RPR Accepted” 

edge will be directed from the CC state to the SE state, and there will be an unlabeled 

edge from the SE state to the CM state. Adding security features to the tasks causes 

additional energy and timing overheads. In this paper, for simplicity, we do not include 

the SE state in our model although its inclusion is straight-forward as described above.   

4.2 Model of the Wireless Channel 
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The Markovian chain model has proven to be a very successful mathematical tool to 

describe a wireless channel. A lot of Markovian chain based models have been proposed, 

from two-state “Gilbert Elliot” model (Elliot [1963]) to hierarchical hidden Markov 

model (Yang et al. [2002]). Complex models work better in terms of capturing the higher 

order statistics of the wireless channel, but result in a nearly exponential increase in 

model complexity (Haggstrom [2002]). A real wireless channel is usually exposed to 

both fast and slow fading effects. The study in Zorzi et al. [1998] suggests that a two-

state Markov chain model is quite accurate and remains insensitive to different 

coding/modulation schemes when the fading is slow, whereas independent, identically 

distributed (i.i.d.) processes are suitable for describing the fast fading effects. Based on 

this study and other similar published results, in this paper, we adopt a two-state 

continuous-time Markov process to model the slow fading effect. We assign a constant 

packet error rate PER to each state. These rates represent the expected packet error rate of 

the i.i.d. processes for describing the fast fading effect. The wireless channel model is 

shown in Figure 4, where 1/v1,2 and 1/v2,1 represent the expectation time that the wireless 

channel remains in state w1 and w2, respectively. Notice that it is straightforward to 

extend the two-state model to a higher-order model with more states to achieve higher 

accuracy, but a two-state wireless channel model is sufficient for our purpose.   

1w 2w

1PER 2PER

1,2v

2,1v
 

Figure 4. Two-state CTMDP model of wireless channel. 

Let’s define the average packet error rate (PER, 0≤ PER≤1) as the ratio of the number 

of un-recoverable packets, in spite of error-correction techniques such as CRC coding, to 

the total number of packets. We assume that any packet that is corrupted during 

transmission and for which error correction circuitry on the receiver side cannot fix the 

error must be re-transmitted. Let t denote the time required for transmitting an n-packet 

data over an error-free wireless channel. The expected time ta for transmitting the same 

data over an error-prone wireless channel can be calculated as follows: 

PER
t

PER
ntPERtnt

m

m
a −

=
−

=⋅⋅= ∑
∞

= 11
0

0
0 , 

where t0 denote the time for transmitting a single packet over an error-free wireless 

channel, and m is the number of re-transmissions. 
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4.3 Model of the Server 

The server can be represented as an infinite M/M/1 queue (Dshalalow [1997]) with a 

multi-state task generator as shown in the Figure 5. Typically a server connects to a 

number of clients and has to perform a large amount of local computations. Therefore, we 

assume that under the stationary state condition: i) the rate of incoming tasks for the 

server is independent of any particular client; and ii) this rate changes slowly. From the 

client’s viewpoint, what is important is the rejection probability of its RPRs. Thus we can 

reduce the order of the model as explained below. 

sμ

∞

1,sλ

2,sλ

ms,λ

1,2η 2,1η

 

Figure 5. Queuing model of the server. 

Let the aggregated incoming task rate of the server be λs and its average service time 

1/μs. We enforce the condition: λs<μs; otherwise, there will exist no limiting distribution 

for this queuing process. The limiting probability that the number of waiting tasks in the 

server queue equals n, is computed as:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

s

s
n

s

s
np

μ
λ

μ
λ

1 . 

First, we assume that the timing bound imposed on an RPR that is sent to the server 

for remote execution (i.e., the timing bound, RTB, for an RPR) is some slack factor c≥1 

times larger than its actual execution time on the server. Next, we assume that the server 

uses a preemptive priority task queue with a block list to buffer the tasks waiting to be 

executed. When an RPR is received, the server compares its RTB and the total execution 

time of all tasks that it must perform, including those in the task queue and in the block 

list, to check whether this RTB can be satisfied if the RPR is executed on the server 

immediately after all currently scheduled tasks are completed. If this condition is met, 

then the RPR will be accepted; otherwise, it will be rejected. When an RPR is accepted 

by the server, it is inserted into the block list and assigned a priority number equal to its 

acceptance time (this algorithm is different from the earliest deadline first scheduling.) 

When the complete data (i.e., body) for this RPR is received by the server, it is moved 

into the task queue. In the task queue, the task having the least priority number will 
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preempt the currently executed task and will be serviced immediately. The flow diagram 

of RPR acceptance and execution on the server is shown in Figure 6. Based on this 

scheme, it is guaranteed that the time that an accepted RPR spends on the server will 

never exceed its assigned RTB. Using RTB with this scheme provides the mobile client 

an adjustable mechanism to bound the average time that its RPRs will be spending on the 

server.  

 

Figure 6. Flow diagram of RPR acceptance and execution on the server. 

The execution time of an RPR on the server can be approximated by an exponential 

distribution with a mean value k/μc, where 1 /μc is average service time of the client, k is 

the ratio of processing speed of the client to the server, k≤1.  So the RPR rejection 

probability is calculated as: 
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(4-1) 
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where ts is the execution time of the RPR on the server and tw denotes the waiting time of 

the RPR on the server. gs(·) and gw(·) are the probability density functions of random 

variables ts and tw, respectively. LT-1[·] represents the reverse Laplace Transform. By 

using a similar approach, for a given c, we can derive the average waiting time of an RPR 

on the server Tw, which is calculated as: 

( ) ( )
1

,0

0 0

{ | ( 1) , }
Pr{ ( 1) | }

( 1) 1
( 1)

tw
c

w w n w w s s s

w n w w s n
n n w s

s

s s s c

t g t dt g t dt
T p E t t c t n p

t c t n
k c c

k c
λ

μ λ μ μ

−

∞ ∞

∞ ∞

= =

⋅
= ⋅ ≤ − = ⋅

≤ −

−
= ≥

− − +

∫ ∫
∑ ∑

 

Assume the average service time 1/μs is constant. Thus, among the server parameters, 

only the incoming task rate λs is related to the rejection probability. Consequently, the 

server model may be reduced to a multi-state Markovian process as illustrated in Figure 

7. In this model, it is assumed that the values of μc and k are constant.  

1,sλ 2,sλ

2,1η

1,2η

ms,λ

 

Figure 7. CTMDP model of the server. 

 

5. POLICY OPTIMIZATION 
We describe two policies: an off-line optimal policy and an on-line adaptive policy. The 

off-line optimal policy is computed based on the joint stochastic model of the client, the 

wireless channel and the server by using a linear programming approach. If the key 

characteristics of the wireless channel and the server are stable, then using the offline 

policy will result in the optimum energy saving solution. In practice, however, the 

channel conditions and the server workloads vary in time. For this time-varying situation, 

an on-line adaptive policy is devised to handle this time-varying situation. This on-line 

policy is based on dynamic lookup of pre-computed off-line optimal policies from a 

Cached Policy Table (Hwang et al. [1997] and Chung et al. [2002]). The key into this 

cache table is the parameter set that describes the channel conditions (packet error rate) 

and the server status (rejection probability for RPRs.) The value is the optimal policy that 

should be put to practice. Although the optimality of the on-line policy cannot be 

guaranteed (because of the client-side error and/or latency in determining the channel and 

(4-2) 
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server parameters), it has proven to be a satisfactory solution in a varying environment, 

especially if the dynamics of the network change are not too fast (cf. the results.) 

5.1 Off-line optimal policy 

The goal is to find an optimal policy for minimizing the energy consumed by the 

client based on the characteristics of the client, the wireless channel, and the server. To 

account for QoS requirements of real applications, the optimal policy is obtained subject 

to hard constraints on the expected task service time and task loss rate. A task is lost in 

(or dropped by) any of the client queues (SQ, CQ or PQ) if the queue is full when the task 

arrives. We formulate the policy optimization problem as a linear program as described 

next. 

Let x represent the state of the whole power-managed system and ax denote an action 

enabled in state x. The constrained energy optimization problem is formulated as a linear 

objective function with constraints as follows: 

{ }
Min x x

ax
x

x

a a
x xf

x a

f γ
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∑∑  

where xa
xf  is the frequency that state x is entered in and action xa  is chosen in that state; 

xa
xγ  is the expected cost, which represents the expected energy consumed when the 

system is in state x  and action xa  is chosen. It is calculated as:  

,( , ) ( , )x x xa a a
x x x x x

x x

pow x a p ene x xγ τ ′
′≠

′= + ∑ , 

where ∑
≠′

′=
xx

a
xx

a
x

xx
,1 στ  denotes the expected duration of time that the system will stay in 

state x  when action xa  is chosen; and , , ,
x x xa a a

x x x x x x
x x

p σ σ′ ′ ′′
′′≠

= ∑  denotes the probability that 

the next system state is x’ when the system is in state x  and action xa  is chosen. 

This optimization problem is subject to the following conditions. 

1) Non-negativity Constraint 

0≥xa
xf  

The inequality is implicit in the definition of variable xa
xf . This is because xa

xf  is a 

frequency, which can only take a nonnegative value.  

2) Normalization Constraint 

(5-1) 

(5-2) 

(5-3) 
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1=∑∑
x a

a
x

a
x

x

xxf τ
 

This equation sets the summation of all state-action probabilities equal to one, which 

follows from the definition of a probability space.  

3) Transfer-Balance Constraint 

, 0,      x x x

x x

a a a
x x x x

a x x a
f f p x X′ ′

′

′ ′
′≠

− = ∀ ∈∑ ∑ ∑
 

It is known that if a Markovian process is stationary, then the input rate of each state 

will be equal to the output rate of that state.  

4) Loss Rate Constraint 

SQ full CQ full PQ full( ( ) ( ) ( ))x x

x

a a
x x h

x a
f Tτ δ δ δ+ + ≤∑∑  

where 
⎩
⎨
⎧

=
.,0
;,1

)(
otherwise

trueisxif
xδ . 

This inequality ensures that the probability that the queue becomes full is less than a 

preset threshold. This is our way of controlling the request loss rate in the system. 

5) Delay Constraint 

This constraint limits the average service delay of locally generated SRs, which may 

be processed locally or remotely. Let 1xc ≥  denote value of the slack factor c used in 

determining the RTB of an RPR (c.f. Section 4.3) when the system is in state x. With 

regard to the defined system model, cx value affects only if the CP is in state CC 

(Conference) in the global system state x. In the following, this condition is expressed by 

formula Scp,x=CC, where the only available action xa  is “do negotiation”.  

Let CM CC
xf  denote the frequency of a transition whereby the CP enters state CM from 

a system state x where the CP was in state CC. It is also the frequency that an RPR is 

accepted in state x. From Little’s theorem (Dshalalow [1997]), for a stationary queueing 

system, the expected number of service requests waiting in the system is equal to the 

product of the average incoming rate of the requests and the expected delay experienced 

by a request. Thus, by viewing the client-server system as a black-box, which is the view 

typically taken by the client, the delay constraint may be expressed as 

|
, , ,( ) ( )x x

x

a a CM CC
x x s x p x c x w x c

x a x c

kf q q q T f Dτ λ
μ

+ + + + ≤∑∑ ∑ , 

and 

(5-4) 

(5-5) 

(5-6) 

(5-7) 
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, , ,CC & CM( ),x x

x

CM a aCC
x x x x cp x cp x

a x
f f p s s x Xδ′ ′

′

= = = ∀ ∈∑∑ . 

where λc is the average rate of incoming tasks for the client; qs,x, qc,x and qp,x represent the 

numbers of waiting tasks in the queue SQ, CQ and PQ in state x, respectively. 

This constraint is explained as follows. The first term on the left-hand side of this 

inequality calculates the expected total number of SRs waiting in the mobile client; the 

second term computes the same for the remotely executed SRs (RPRs) on the server, 

which is explained as follows. Recalling the definition of RTB of an RPR and noting that 

/CM CMCC CC
x x

x
f f ′

′
∑  is the probability of an accepted RPR in state x, it follows that 

| |( )CM CC CM CC
x w x

x xc

kf T f
μ ′

′

+∑ ∑  limits the average service delay of an accepted RPR on 

the server. The total rate of SRs migrated to the server equals CM CC
x

x
f∑ . According to 

Little’s theorem, the product of these two terms, which is ( )CM CC
x w

x c

kf T
μ

+∑ , gives the 

expected number of RPRs to be executed on the server. Thus, the summation on the left-

hand side is the total number of SRs waiting in the black-box system. Since λc is the 

average rate of service requests of the mobile client, again from Little’s theorem, this 

inequality limits the expected service delay seen by an incoming service request to D. 

Inequality (5-7) is not a linear constraint since cx, which determines the value of Tw, 

and CM CC
xf  are both unknown variables. In the following, we discuss how to convert 

this constraint to a linear constraint. Let CI CC
xf  be the frequency of a transition whereby 

the CP enters state CI from a system state x where the CP was in state CC. It is also the 

frequency that an RPR is rejected in state x. Let ,
xa

x imp  denote the probability that from 

state x where Scp,x=CC, the system transits to state x’, where Scp,x=CI or Scp,x=CM. ,
xa

x imp  

is constant regardless of the value of cx. So we have the following linear constraint 

, ,( CC)x x

x

CM CI a aCC CC
x x x x im cp x

a

f f f p Sδ+ = =∑ , x X∀ ∈ , 

with 0, 0CM CICC CC
x xf f≥ ≥ . 

From equation (4-1), we have 

(5-8) 

(5-9) 

(5-10) 
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( ) ( )1 (1 )

CI CMCC CC
x s c s c c x

xCM CI CICC CC CC
s s s c s sx x x

f k fc
k c k kf f f

λ μ μ μ ρμ
μ μ λ μ μ μ ρ

−
= ⋅ ⇒ = +

− − + −+
 

where ρ=λs/μs<1. 

By substituting (5-11) into (4-2), we obtain 

(1 )

CI CC
x

w CM CC
s s x

fT
f

ρ
μ ρ μ

= −
−

, 

Since for a meaningful RPR timing bound, it is required that Tw≥0, from (5-12), we 

obtain 

1
CI CMCC CC

x xf fρ
ρ

≤
−

 

After substituting (5-12) into (5-7), we get 

 |
, , ,

1( ) [( ) ]
1

x x

x

CIa a CM CC CCs
x x s x p x c x x x c

x a x s c

kf q q q f f Dμρτ λ
μ ρ μ

+ + + + − ≤
−∑∑ ∑ . 

 

The optimization problem is a linear program (LP) having a linear objective function 

(5-1) confined by constraints (5-3) to (5-6), (5-9), (5-10), (5-13) and (5-14). It is solved 

over variables xa
xf , CM CC

xf , CI CC
xf . 

5.2 On-line policy 

For the on-line policy, we assume that the status of the wireless channel and the 

aggregated incoming task rate to the server is not a priori known. Our solution is to 

construct a cache table of M×N entries off-line and then employ the table at runtime. 

Each entry (i,j) in this table corresponds to an optimal DPM policy computed based on 

the method proposed in Section 5.1 under the condition that the packet error rate of the 

wireless channel is PERi and the average incoming task rate to the server is λs,j. The 

indices of the cache table are arranged in an increasing order, i.e., PERi< PERi+1 and λs,j 

< λs,j. The sets {PERi} and {λs,j } for which an optimal policy is pre-computed and stored 

in the table are determined by monitoring the channel and the workload status of the 

server during a characterization phase and recording the most common sets of conditions. 

Note that if the pair of online parameters, PER and λs, is different from any that is stored 

in the lookup table, then the policy corresponding to the nearest recorded pair of 

parameter values is chosen.  

(5-11) 

(5-12) 

(5-13) 

(5-14) 
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In contrast to the off-line optimal policy, if during a predetermined period there are no 

RPRs, the on-line policy will arbitrarily select a task as a REC and send a corresponding 

RPR to the server.  This is needed in order for the client to learn about the condition of 

the wireless channel and the status of the server.  

The client uses profiling and regression to estimate the value of PER and λs online as 

is detailed next. Let APER(n) denote the percentage of corrupted packets during the nth 

conferencing session with the server. The predicted value of the packet error rate PER(n) 

is calculated as:  
)1()()( )1( −⋅−+⋅= nnn PERAPERPER αα . 

where α is a coefficient and 0≤α≤1. α should be set to a value closer to one in a fast-

changing wireless channel and to a value closer to zero in a slow-changing wireless 

channel. 

Let λs
a,(n) denote the incoming task rate and the average task service time measured on 

the server side within an nth sliding window. Thus, the predicted incoming task rate for 

the next sliding window is 
( ) ,( ) ( 1)(1 )n a n n

s s sλ β λ β λ −= ⋅ + − ⋅ .  

where 0≤β≤1 is a coefficient. β should be set to a values closer to one if the workload 

status of the server changes rapidly; otherwise, it should be set closer to zero. 

If one of the two conditions takes place:  

(PERi-1+PERi)/2 < PER(n) ≤ (PERi+PERi+1)/2 < PER(n-1) or  

PER(n-1) ≤ (PERi-1+PERi)/2 < PER(n) < (PERi+PERi+1)/2,  

then the policy corresponding to the entry (i, ⋅) will be activated. Similarly, if 

condition  

(λs, j-1+ λs, j)/2 < λs
 (n) ≤ (λs, j+ λs, j+1)/2 < λs

 (n-1) or  

λs
 (n-1) ≤ (λs, j-1+ λs, j)/2 < λs

 (n) < (λs, j+ λs, j+1)/2,  

is satisfied, the policy corresponding to entry (⋅, j) will be activated. Note that “⋅” 

represents the unchanged index or index changed based on other conditions. The index i 

and j are calculated independently. 

The flow diagram of the on-line policy is shown in Figure 8. 



Journal of Low Power Electronics, Vol. 6, N° 2, August 2010 

 

22 

tsilence>Th ?

No

A RPR
candidate?

Calculate timing constraint
and start a new conference

and wait for an
acknowledgement from the

server

Yes

Yes

Execute the task
locally

No

A new task
generated

RPR
accepted?

Migrate the task

Yes
Count number of

retransmitted
packets

Monitoring status
change of wireless

channel

No

,( )

( )

Get 

Compute 

a n
s

n
s

λ

λ

( )

( )

Compute n

n

APER
PER

Calculate new values
of index i and j of
policy lookup table

policy corresponding
to entry (i,j) of policy

lookup table is
activated

Make decision

tsilence denotes the length of the time
period since last RPR finished.
Th is a predetermined threshold

time dependence
action dependence

process flow

 

Figure 8. Flow diagram of the on-line policy. 

 

5.3 On-line policy extension to G/G/1 server 

In the previous two subsections, we assumed the server with aggregated input service 

requests can be modeled as an M/M/1 queue. Here we extend the proposed approach to 

solve the policy optimization problem with a G/G/1 server where the request interval 

time and service time of the aggregated input service traffic take general distributions 
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which are unknown to the mobile client. Thus it is not possible to find analytical 

relationships between Preject, Tw and c, such as those given in equations (4-1) and (4-2), 

when constructing the policy table.  

We continue to assume that the server executes the same scheme as described in 

section 4.3 for the RPR acceptance and execution. In this case, we can use a two-

dimensional policy table; However, this time, each entry (i,j) in the table corresponds to 

an optimal DPM policy computed under the condition that the packet error rate of the 

wireless channel and the frequency of RPR rejections over a moving window 

measurement are PERi and Preject,j, respectively. A predetermined c value is used to 

determine the RTB of an RPR. Recalling the definition of RTB, ck/μc is an upper bound 

on the average time of an accepted RPR staying on the server. So the delay constraint in 

section 5.1 will be cast as 

|
, , ,( )x x

x

a a CM CC
x x s x p x c x x c

x a xc

ckf q q q f Dτ λ
μ

+ + + ≤∑∑ ∑  

With known values of PER and Preject, the state transition probabilities ,
xa

x xp ′  may be 

obtained for any x, x’ and ax (c.f. definition of ,
xa

x xp ′  in equation (5-2)). Thus, by 

substituting equation (5-8) into (5-15), we obtain a linear constraint   

, , ,

, , ,CC & CM

( )

( )

x x

x

x x

x

a a
x x s x p x c x

x a

a a
x x x cp x cp x c

x a x xc

f q q q

ck f p s s D

τ

δ λ
μ ′ ′

′≠

+ +

+ = = ≤

∑∑

∑∑∑
 

The policy for each table entry is obtained by solving as a linear program with 

constraints (5-3) to (5-6) and (5-16).  Let RRN denote the rejection ratio of the last N 

RPRs. The predicted server rejection probability Preject
(n) is: 

( ) ( 1)(1 )n n
reject N rejectP RR Pβ β −= ⋅ + − ⋅  . 

where 0≤β≤1 is a coefficient. Since RRN is the latest observed rejection ratio while 

Preject
(n) is an age-weighted average ideally capturing the long-term task rejection ratio, β 

should be set to a value close to one if the workload status of the server changes rapidly; 

otherwise it should be set close to zero. 

The flow diagram for this policy is similar to that presented in Figure 8, except that 

different indexing parameters are used in the policy table look-up.  

 

6. EXPERIMENTAL RESULTS 

(5-15) 

(5-16) 
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We used a StrongARM SA-1110 processor as the SP in the mobile host. The 

StrongARM processor was running at a clock frequency of 206MHz. The CP in the host 

was Orinoco WLAN PC card. The power consumption and state transition times of the 

StrongARM processor and the Orinoco WLAN PC card are reported in Table 1. 

TABLE 1. FEATURES OF STRONGARM SA1110 AND ORINOCO WLAN. 

StrongARM SA1110 Busy Wait Sleep 

Power (mW)  600 (with MEM) 100 0.2 

Transition Time Wait to Busy 

Busy to Wait 

10 us 

Sleep to Busy 160 ms 

Busy, Wait to Sleep 90 us 

Orinoco WLAN card Transmit Receive Sleep 

Power (mW) 1400 900 50 

Transition Time Wake-up time 34 ms 

Sleep-down time 62 ms 

 

In the simulations, we assumed that the average task execution time on the mobile 

host is 400ms, the conference time is 40ms, and the average RPR data migration time 

plus the RES pick up time is 80ms. The task incoming rate is 0.625 per second. The 

Maximum task loss rate is 0.1%. The average task delay constraint is less than 0.8s. We 

compare the results of our offline and online policies with two baseline policies. These 

two baseline methods are: 

LEO (Local Execution Only) policy: No RPR. The client will execute every task 

locally. 

REF (Remote Execution First) policy: Always try RPR first. For every incoming 

task, the client will first send an RPR to the server. The client will execute the task 

locally only if the server rejects the RPR. 

Off-line policy 

In Figure 9, assume that the state of the wireless channel and the server are 

unchanged. We will refer to our Markovian Decision process-based Remote 

Processing policy as the MDRP policy. 
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Figure 9. Comparison of simulation results of the three policies with an invariable 

wireless channel and server.  

 
When the PER and RPR rejection probabilities are small, the REF policy results in 

large power savings compared with the LEO policy. However, as the PER and RPR 

rejection probabilities increase, the average power consumption of the REF policy 

increases and finally significantly outweighs that of the LEO policy. This trend exists 

because of both the energy wasted by the CP during the RPR negotiations and the extra 

energy consumed by the SP arising from the more stringent timing constraints (since 

some time has been wasted for RPR negotiations.) The results demonstrate that the 

MDRP policy always consumes the least power and achieves power savings as high as 

35%. 

Next we consider a wireless channel and a server with time-varying characteristics. In 

this simulation, the server is simulated as an infinite queue with a Markovian process-

based task generator (task incoming rates are λs,1 and λs,2). We assumed that the average 

task execution time on the server is 40ms and the processing speed of the server is 10 

times faster than the client. The remaining model parameters are reported in Table 2. 

Results of the off-line policy are compared with the two baseline polices in Table 3. In 

this comparison, the REF policy uses a fixed slack factor c which guarantees that, under 

the worst conditions, the average delay of remotely executed tasks is bounded by the 

LEO 

REF 

MDRP 

LEO 

REF 

MDRP 

0.95 

0.95 
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expected delay D. The results demonstrate that the MDRP policy achieves more than 

17% power savings compared to both baseline policies. This power saving comes from 

the fact that the MDRP policy dynamically adjusts the probability of RPR generation and 

the RTB for remotely executed tasks based on the state of the wireless channel, the server, 

as well as the mobile client. 

TABLE 2. MODEL PARAMETERS OF WIRELESS CHANNEL AND SERVER. 

PER1 PER2 v(1,2) v(2,1) 

0% 20% 1/15000 1/10000 

λs,1 λs,2 η(1,2) η(2,1) 

16 per sec. 24 per sec. 1/20000 1/20000 

 

TABLE 3. SIMULATION RESULTS OF THE OFF-LINE POLICY. 

Policy LEO REF MDRP 

Average Power (W) 0.2742 0.2788 0.2292 

MDRP Improvement 17.4% 17.8% -- 
 

On-line policy 

In the next two simulations, the server is simulated as an infinite queue with a 

randomly generated task trace that follows a Markovian process in Sim1 or a Pareto 

process in Sim2. The parameters of the wireless channel is slowly and randomly 

increased or decreased. The on-line policy is based on a 5×5 decision table. Simulation 

results are shown in Table 4. 

TABLE 4. SIMULATION RESULTS OF THE ON-LINE POLICY. 

 Mode LEO REF MDRP 

Sim1 Average Power (W) 0.2742 0.2597 0.2276 

MDRP Improvement 17.0% 13.4% -- 

Sim2 Average Power (W) 0.2742 0.2810 0.2364 

MDRP Improvement 14.8% 16.8%  

 

7. CONCLUSION 
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A new mathematical framework for extending the lifetime of a mobile host in a 

client-server wireless network by using remote processing was proposed. The client-

server system was modeled based on the theory of continuous-time Markovian decision 

processes. The DPM problem was formulated as a policy optimization problem and 

solved exactly by using a linear programming approach. Based on the off-line optimal 

policy computation, an on-line adaptive policy was developed and employed in practice. 

This adaptive policy is further extended to solve the problem with a server where the 

request interval time and the service time assume general distributions. Experimental 

results demonstrated the effectiveness of our proposed methods. 
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