

1-xxxx-xxxx-4/10/$25.00 ©2010 IEEE 10th Int’l Symposium on Quality Electronic Design

Minimizing the Power Consumption of a Chip Multiprocessor under
an Average Throughput Constraint

Mohammad Ghasemazar, Ehsan Pakbaznia, Massoud Pedram

University of Southern California
Department of Electrical Engineering

Los Angeles, CA 90089 U.S.A.
{ghasemaz,pakbazni,pedram}@usc.edu

ABSTRACT - In a multi-core system, power and performance
may be dynamically traded off by utilizing power
management (PM). This paper addresses the problem of
minimizing the total power consumption of a Chip
Multiprocessor (CMP) while maintaining a target average
throughput. The proposed solution relies on a hierarchical
framework, which employs core consolidation, coarse-grain
dynamic voltage and frequency scaling (DVFS), and task
assignment at the CMP level and fine-grain DVFS based on
closed-loop feedback control at the individual core level. Our
experimental results are very favorable showing noticeable
average power saving compared to a baseline technique, and
demonstrate the high efficacy of the proposed hierarchical
PM framework.

KEYWORDS
Chip multiprocessor, Power minimization, Hierarchical

power management, Closed-loop control.

1. INTRODUCTION
With the increase in demand for high performance

processors, Chip Multiprocessor (CMP) architectures have
been introduced to enable continued performance scaling in
spite of the slow-down of the CMOS technology scaling. At
the same time the demand for higher processing power is
causing the need for power and energy efficient design of
multi-core processing platforms. As technology continues to
scale to smaller feature sizes, power dissipation and die
temperature have become the main design concerns and key
performance limiters in processor design.

The problem of power efficient multiprocessor design has
been extensively studied in the literature. Prior studies
propose dynamic power/thermal management for
homogeneous [1]- [4] or heterogeneous multicore
architectures [5] [6]. The real-time power management
techniques include local responses at the core-level [2] [7] [8]
or global task scheduling heuristics [6] [9]- [11]. Typically, the
problem formulations target performance optimization under
a power/energy budget [1] [3] or a thermal constraint [7] [12]-
 [14], or attempt to minimize a composite cost function in the
form of energy per throughput [5] [12]. Minimization of the
total power consumption of a general-purpose CMP system
while meeting a total throughput constraint [4] [15] is an

equally interesting problem, which is the focus of the present
paper. Our solution framework solves the power management
problem for such a CMP system through concurrent core
consolidation, task assignment to cores, and core-level
DVFS.

Dynamic Voltage and Frequency Scaling (DVFS) for single
processor systems is well understood and standardized [16].
However, due to key differences between single-core and
multicore systems, there are a number of options in applying
DVFS to CMP platforms [3] [17] [18]. In particular, DVFS in
such systems can be applied in one of two ways: chip-wide
 [2] [3] or per-core [1] [18] [19]. Moreover, DVFS may be
combined with power gating (shutdown) to a portion of the
chip. Finally, performance of the CMP system is strongly
influenced by the task to core assignment, and thus, DVFS
should be combined with (or at least solved in light of) task
assignment [9].

In [4], the authors address the problem of finding a chip-
wide operating voltage-frequency (v-f) setting as well as
finding the number of active cores that minimize power
consumption of a CMP under a performance constraint. The
proposed method uses an offline characterization of the
system power and performance for target application and a
hill-climbing search method to find the optimal solution, and
therefore is costly to be a general purpose runtime power
management technique. Reference [15] formulates the
problem of minimizing total power consumption of a multi-
core system subject to a throughput constraint by means of
dynamic voltage scaling and task scheduling, and proves it to
be NP-hard. A heuristic is then presented for the case of
queued tasks, which is based on performing exhaustive
search in the state transition space at each task execution
point. The shortcomings of this work include the high
complexity of the proposed solution, and the fact that it does
not utilize core-shut down as a way of saving power. In [2],
the authors deploy a control theory based controller (PI
controller) to perform DVFS in CMPs at runtime. Similarly,
the limitation of this work is that it does not consider the
potential power saving of changing the number of the active
cores. In [1], the authors introduce the concept of a global
power manager which senses the per-core power and
performance of a CMP and sets the operating power mode of
each core while meeting a target power budget. One of the
limitations of this work is also that independent of the amount
of the workload that is given to the CMP, the number of the
active cores is always fixed. This results in sub-optimal

This research was sponsored in part by a grant from the National
Science Foundation under award number CNS-0615437.

G

po
w
to
th

to
C
C
D
in
co
co
in
by
ta
co
em
te
pe
th
re

se
m
m
th
m
re

2.
2.

m
co
in
in
su
ru
ut
he

re
as
ta
co
de

Ghasemazar, M

ower consum
workload is low
o run a specific
his approach.
In this paper,

otal power con
MP-level aver
MP. The mini

DVFS, core c
ntroduced hier
omprised of th
onsolidation
nformation/pred
y the workload
asks, which ar
ores considerin
mploys a cl
echnique at cor
eriodic interva
he core to enfor
equirements.
The novelties
- It solves the

an average
consolidatio

- It proposes
power man
depending o
CPU intens

- It uses a hig
by emulatin
queuing, an

The remainde
ection 2, we p

models used in t
minimizing the
hroughput cons

method in detai
esults while sec

. PRELIMINA

.1. System M
We consider a

multiprocessor
omposed of N
ndependent ex
nterface to the
upply voltage a
un at different
tilizing per-cor
eterogeneously
Application pr

equests/tasks an
ssume these ta
ask runs on a
ommunication.
ependent tasks

Minimizing Pow

mption values
w. Also, the pre
c application f

we address t
nsumption of
age throughpu
mum power so

consolidation,
rarchical glob

hree tiers. The
and coarse-g
diction about th
d manager uni
re assumed to
ng server and t
osed-loop fee
re level which
als and sets th
rce adherence

of this paper m
e problem of C

e throughput
on and closed l

to append a w
nagement unit
on the type of
ive.
gh level simula
ng core conso

nd DVFS.
er of this pape
provide backgr
this paper. Sec

e power cons
straint. In sect
il. Section 5 is
ction 6 conclud

ARIES
Model

an N-way hom
system-on-chip

N homogenous
cept that they
Main Memory
and clock gene
t voltage-frequ
re DVFS [18]

y, in terms of th
rograms and/or
nd send them t
asks are indepe

single core w
. The probl
s in multiproce

wer Consumpti

especially w
mise that each

forever limits t

the problem of
a CMP whil

ut target for task
olution is achi
and task ass

bal power m
top-tier PM un

grain DVFS
he current/futu
it. The mid-tie
o be independ
task affinities.
edback imple
senses a core’

he operating fr
to known chip

may be summar
CMP power op
constraint by
loop DVFS.
workload anal
to perform co
task e.g., mem

ation tool that
olidation, task

er is organize
round on CMP
ction 3 describe
sumption of a
tion 4 we pres
s dedicated to
des the paper.

mogeneous CM
p, MPSoC). S
s processing
y share the L
y [20]. Each co
eration module
uency (v-f) se
 makes cores

heir power and
r the operating
to the CMP. Si
endent of each

without the ne
lem of optim
essor systems

ion of a CMP…

when the CM
h core is dedica
the practicality

f minimizing
le maintaining
ks running on
eved by apply
signment in
manager that
nit performs c

based on
ure tasks provid
r PM assigns

dent, to availa
The low-tier P

ementing DV
’s performance
requency level
p level through

rized as follow
ptimization un

means of c

yzer to the CM
arse grain DV

mory intensive

simulates a CM
scheduling, ta

ed as follows.
P and through
es the problem
a CMP given
sent our heuris
the experimen

MP system (a.k
Such a system
cores which
2 cache and
ore has a separ
e so that they c
ettings. Note t

in CMP oper
d performance.
g system gener
imilar to [11],
h other, and ea
eed for inter-c
mally assign
has been stud

…

MP
ated
y of

the
g a
the

ying
the

is
ore
the
ded
the

able
PM

VFS
e at
l of
hput

ws:
nder

ore

MP
VFS

vs.

MP
ask

In
hput
m of
n a
stic
ntal

k.a.
m is

are
the

rate
can
that
rate

rate
we
ach
ore

ning
died

in the l
present
needed
assignm
structur
task wa
account

Gener
size, s,
to be
architec
ratio; in
accesse
penaltie
task is
can be c
generate
data ab
Comme
dynami
monitor
the fly
Hardwa
instance
process
executio
to error
these un
techniqu
exact ta
using a

Figure
system
(PMU),
cores an
input d
controll
Queue (
assigns
Each C
hold tas

The P
hardwar
or as
execute

iterature [10] [
paper. Note

for addressing
ment policy in t
re of a task gra
aiting for the re
ted for.
ral characterist
and memory a
known. Note

ctural perform
nstead it deno
s to memory

es. Roughly sp
CPU-intensive
collected from
ed by certain a

bout characteri
erce, Banking,
c profiling w
ring units (e.g.
by using the

are Performanc
e, MSR_PERF
ors reports th
on [24]). In eit
r which affects
ncertain values
ue to take care
ask characteris
feedback contr

Figure 1. Syste

e 1 shows an
considered in

, which sets th
nd provides the
data needed fo
ler for the sy
(GQ), in which
the tasks in th

CMP core has
sks that are ass
PMU may be im
re unit, such a
a piece of h

ed on one of t

21] [22], but is
however tha

g task depende
the task dispatc
aph; any perfo
esults of a pre

tics of tasks, in
access rate (M

that MAR i
mance metric,

tes an approxi
that cause p

peaking, MAR
e or memory-in

history-based
applications (s
istics of variou
, or Support

with the aid
 a core’s IPS v
retired instru

ce Counters d
F_FIXED_CTR
he number of
ther method, e
s the result of
s, and the powe
e of this uncerta
tics; in our ap
rol loop (cf. se

em model with glo

n abstract bloc
this paper. A

he working v-f
e Task Dispatc
or task assign
ystem. The CM
h the incoming
e GQ to the av
a Local Queu
igned to the co
mplemented th
as a separate em
high-priority s
the cores. Th

s outside the s
at the only m
encies is to ut
ching unit that

ormance losses
edecessor task

ncluding their e
MAR) values, a

is not a prec
such as the
imation of the
pipeline stalls
value indicate

ntensive. This
profiling data

see for exampl
us tasks gener
applications [
of built-in p

value can be m
ction count m
during a time
R0 register in
f instructions

estimated value
decisions mad

er manager mu
ainty and/or in

pproach it is do
ection 3).

obal and local qu

ck diagram of
Power Manag

f levels of diff
ching Unit (TD
ment, acts as
MP has a sin
g tasks are held
vailable cores p
e (LQ), which

ore.
hrough either a
mbedded micr

software whic
he former real

scope of the
modification
tilize a task
handles the

s due to one
can thus be

expected job
are assumed
cise micro-
cache miss

e number of
and delay

s if a given
information
of the tasks

le published
rated by E-
[23]) or by
performance
measured on
measured by

epoch; for
Intel Xeon
that retire

es are prone
de based on
ust employ a
naccuracy of
one through

eues.

f the CMP
gement Unit
ferent CMP

DU) with the
the global

ngle Global
d. The TDU
periodically.
h is used to

a centralized
rocontroller,
h is being
lization can

Ghasemazar, Minimizing Power Consumption of a CMP…

become a bottleneck for the system due to PMU’s limited
bandwidth for collecting runtime data about cores and the
growing overhead of detailed data processing and decision
making as the number of cores goes up. The latter realization
helps with the scalability of the PM framework with respect
the number of cores in the system. In addition in our
proposed hierarchical framework, the top tiers of PM perform
a quick (low overhead) global data processing and decision
making at the system level, whereas the low-tier PM
performs detailed decisions at the core level.

The disparate applications are assigned to the cores by the
TDU, which is a part of the OS code. Depending on the size
of the CMP, i.e., number of cores in the system, the TDU can
be realized in a centralized or distributed manner. In this
paper, we assume a centralized TDU implementation. The
GQ is typically implemented in software as part of the OS
kernel while the LQ’s are implemented as part of the local
power management codes that run on the individual cores.
2.2. Throughput Model

Throughput of a processor core is defined as the average
number of executed instructions per second and is denoted by
instructions per second or IPS for short. If a core that is
running at frequency f executes task j with known
characteristics, then the time t0 needed to run I0 instructions
can be estimated by equation (1), in which the first term
represents the computation time and the second term accounts
for the delay of accessing higher level caches.

଴ݐ ൌ
଴ܫ

௝௡௖௠ܥܲܫ · ݂ ൅ ௖ߙ · ௝ܨܯܥ · ଴ (1)ܫ

where CMFj denotes cache miss frequency, i.e. the proportion
of instructions that cause an L1 cache miss while executing
task j; ߙc is a fixed parameter representing average cache
miss penalty which captures the core’s expected stall time
when a cache miss occurs. The value of ߙc depends on
parameters such as the pipeline implementation, cache size,
cache management policy, and speed of the L2 cache and
main memory. IPCj

ncm denotes the no-cache-miss instruction
per cycle of the task; it is defined as the IPC value under a
condition that there are no cache misses, e.g. very large cache
that has all the application data pre-fetched, and thus no
misses occur.

Recall CMF is a micro-architecture level parameter that
indicates the number of memory accesses of a task missing in
the L1 cache. In fact, it can be interpreted as a translation of
high level MAR in the architecture level; in general, a CPU-
intensive task, i.e. low MAR, has a low CMF value while a
memory-intensive task, i.e. high MAR, exhibits a high CMF
(although, a memory-intensive task may have a low CMF due
to its special memory access pattern). Here, we use CMF and
MAR interchangeably to distinct the memory-intensive and
CPU-intensive tasks. Also, note that CMFj in (3) represents
average cache miss frequency due to both instruction and
data cache misses (denoted by ܨܯܥ௝௜௡௦௧ and ܨܯܥ௝ௗ௔௧௔
respectively):

௝ܨܯܥ ൌ ௝௜௡௦௧ܨܯܥ ൅ ௗߨ · ௝ௗ௔௧௔ (2)ܨܯܥ

where ߨௗ is the fraction of instructions accessing data
memory (typical value between 0.1 and 0.6).

Referring to the definition of throughput, throughput of the
core i is calculated as follows using (3):

ܲܫ ௜ܵሺ݂ሻ ൌ ௝ሺ݂ሻܥܲܫ · ݂

௝ሺ݂ሻܥܲܫ ൌ
݆݉ܿ݊ܥܲܫ

1 ൅ ௖ߙ · ௝௡௖௠ܥܲܫ · ௝ܨܯܥ · ݂
 (3)

where IPCj(f) denotes the actual IPC value of the task
running on the core.
2.3. IPS Saturation Effect

Figure 2 shows the relationship between IPS and frequency
as captured in equation (3) for different types of tasks. Figure
2-a corresponds to three low-CMF tasks with high, medium
and low IPCncm values, while Figure 2-b shows three high-
CMF tasks with high, medium and low IPCncm values.

Figure 2. Throughput-frequency relationship for (a) low CMF tasks (b)
high CMF tasks.

From the Figure 2-b, domain of the IPS function of high
CMF tasks can be divided into two regions: a frequency
region where IPS rises rapidly with an increase in f and
another where rate of change of IPS with f is low. We define
a unit-slope frequency separating these two regions:

௨݂௡௦௟ ൌ ݂
ฬడூ௉ௌడ௙ ୀଵ

 (4)

where డூ௉ௌ
డ௙
 is the partial derivative of the IPS with respect to

frequency (normalized appropriately to produce a unit-slope

Ghasemazar, Minimizing Power Consumption of a CMP…

value). For example in Figure 2-b, funsl for high CMF and
high IPCncm tasks is about 710MHz, which is illustrated by a
dashed line. For different combinations of IPCncm and CMF,
the unit-slope frequency may be calculated for the
corresponding task type. In practice, there is uncertainty
about the predictive values of IPCncm and CMF of an
incoming task, and hence funsl cannot be calculated accurately
for a task in future. In practice, a single average funsl is
assumed for all memory intensive tasks to lower the
complexity. Note that if a task has a high CMF value, much
of the time the core is waiting idle for the memory response,
and hence, clock frequency can be set to a relatively low
value, to reduce power/energy with no or very little
performance loss. Therefore to reduce the runtime of the
consolidation and coarse-grain DVFS steps, we will limit the
clock frequency of a core running specific type of task to
frequencies below the funsl (cf. section 4.1).

3. PROBLEM STATEMENT
Consider an N-way CMP as described in section 2.1. The

PMU seeks to minimize the total power consumption of the
CMP subject to achieving a service rate whereby a GQ
overflow does not occur. This means that on average, CMP
service rate must be greater than or equal to the rate of the
incoming tasks. This is equivalent to imposing a lower bound
constraint on the average throughput of the CMP.

The problem statement can be written as follows:
ሼ݊݅ܯ ஼ܲெ௉ሽ ݏ. ߤ .ݐ ൒ (5) ߣ

where PCMP denotes the CMP power (see equation (7)), λ is
the rate of the incoming tasks (arrival rate of the tasks in the
GQ), and μ is the CMP service rate (departure rate of the
tasks from the GQ). To solve this problem, the power
management algorithm needs to decide on the optimum
number of the processing cores that are required to service
the tasks, determine the v-f setting of each active core, and
assign and schedule the tasks in the GQ to different cores.
Moreover, the predictive input information of the system,
such as the task characteristics (as described in section 2.1)
are prone to uncertainty and inaccuracy, and a mechanism
needs to be adopted to opt out the effect of inaccurate data.
Due to the real time nature of the problem, conventional
mathematical optimization approaches do not result in a
robust solution to this problem. We want to utilize an
efficient (light and thin) and robust algorithm to solve it..

To estimate the power consumption of the CMP, we use a
power model which is the summation of the intra-core power
dissipation and the CMP-level power contribution of the core.
The intra-core power dissipation is comprised of a dynamic
power which is cubically dependent on the core’s clock
frequency (assuming that the frequency f is directly
proportional to the core’s supply voltage level V) and an v-f
setting dependent idle component, Pidle(f). The second
component of CMP’s core power dissipation is Pcommon,chip
(also denoted by PC) which is comprised of power
consumption of the shared resources in the CMP system,
most importantly the L2 cache and I/O interface. This power
component is independent of the frequency of any core.

௖ܲ௢௥௘,௜௡௧௥௔ ൌ ܳ஽ · ݂ଷ ൅ ௜ܲௗ௟௘ሺ݂ሻ
௖ܲ௢௠௠௢௡,௖௛௜௣ ൌ ௅ܲଶ ൅ ூܲ/ை (6)

where QD in the Pcore,intra expression is a constant
(implementation and CMP platform-dependent) term while
Pidle(f) is the idle power consumption for each core which is a
function of the frequency. Pidle(f) at different frequencies, f
values, can be measured offline and the values can be kept in
a lookup table. PL2 and PI/O –that are frequency independent -
denote constant terms capturing the power dissipation of the
L2 cache and I/O interface of the CMP. We have:

஼ܲெ௉ ൌ෍ܽܿ݁ݒ݅ݐሺ݅ሻ · ௖ܲ௢௥௘,௜௡௧௥௔ሺ݅ሻ
ெ

௜ୀଵ

൅ ௖ܲ௢௠௠௢௡,௖௛௜௣ (7)

where active(i) is a pseudo-Boolean variable set to 1 exactly
if the ith core is active. In this model, it is assumed that at
least one core is active in the CMP, executing arrived tasks
and the PMU application.

4. PROPOSED SOLUTION
We introduce an efficient strategy that solves the policy

optimization problem described above. The proposed solution
relies on a 3-tier hierarchical DPM approach (that we call 3T-
PM) where the original problem is broken into three
optimization problems based on the significance and the
granularity level of the decisions that must be made. Higher
level DPM sets values of the input parameters of the lower
levels. Decisions at the top level are made based on coarse-
grain information about the target task set (e.g., predicted
MAR value for tasks in the GQ) whereas the lower level
decisions are made based on characteristics of individual
tasks.

Figure 3. Block diagram of the proposed three-tiered PM.

Figure 3 shows the block diagram of the proposed
hierarchical PMU. The PMU attempts to minimize the CMP
power consumption while ensuring that the CMP throughput
is higher than a minimum threshold value. This is done by:

a) Choosing the optimum number of the cores required to
maintain the required throughput and turning the rest of
the cores off (see tier 1 in Figure 3);

Tier3

Workload Analyzer/Predictor

Task Assignment, Set‐point for
individual High Speed cores

Feedback
loop DVFS

Feedback
loop DVFS

Task Assignment, Set‐point for
individual Low Speed cores

Feedback
loop DVFS

Feedback
loop DVFS

Throughput
Set‐point

Number & initial
frequency of High
Speed cores (nh, fh)

General performance
requirements: IPSh, IPSl

Profile
ILS tasks

Number & initial
frequency of Low
Speed cores (nl, fl)

Number of cores per task type, Coarse grain DVFS

Profile of
IHS tasks

Throughput
Set‐point

Tier1

Tier2

… …

Core 1 Core nh Core nh +1 Core nl+nh

Ghasemazar, Minimizing Power Consumption of a CMP…

b) Dividing the total active cores in two groups: high speed
and low speed cores where the target working
frequencies for high speed and low speed cores are set
(we call this optimization core consolidation and coarse-
grain DVFS, see tier 1 in Figure 3);

c) Assigning tasks from the GQ into the LQ of different
active cores (this task assignment step is done separately
for high and low speed cores, see tier 2 in Figure 3);

d) Setting the target average throughput value (so-called
“set point”) for each core considering the task
assignments, such that the system-level throughput
constraint –in the form of task processing rate- is
satisfied (see tier 2 in Figure 3);

e) Dynamically tuning voltage-frequency level of each
active core by using a local control feedback loop for
each core (we call this step fine-grain DVFS, see tier 3 in
Figure 3).

Decisions at each tier of the PM hierarchy are performed
regularly, but with different frequencies. Tier 1 decisions are
made at each decision epoch, Td. Task assignment is done as
part of the second tier optimization at each allocation window
Ta, where Ta < Td. The third tier decision making is done with
period of Ts, which denotes the sampling period of the digital
feedback control loop of each core. Typically Ts < Ta, such
that the lower level controller iterates for enough sampling
periods and becomes stable within the Ta period. This means
the stability of two tiers are independent as long as they are
operating according to the specification. Furthermore, note
that the hierarchical structure of the solution implies that a
higher level PM makes a decision that sets the target
(aspiration level) for lower levels, and decisions lower levels
only satisfy these targets i.e. they cannot damage higher level
decisions, as long as target points are feasible.
4.1. Workload Analyzer

The task of Workload Analyzer (WA) is monitoring the
incoming tasks at the GQ to (i) classify them based on their
IPC characteristics, and (ii) predict the future workload both
in terms of its arrival rate and its IPC characteristics. The
decision about the amount of workload that needs to be
processed at each decision epoch is also made at this time.
This decision is made so that, on average, queue overflow is
avoided. The WA aims to keep the average queue occupancy
of the GQ at a constant level, which of course implies that the
service rate ߤ matches the demand rate ߣ. In fact, if this
condition is held, CMP has supplied just enough performance
to satisfy the throughput requirement of the system and save
power as much as possible.
4.1.1. Task Classification

As mentioned earlier, MAR indicate if the task is a CPU-
intensive or memory-intensive task. Two classes of tasks are
defined based on their MAR values on the given cores:
Intrinsically Low Speed (ILS, or l for short) and Intrinsically
High Speed (IHS, or h for short) tasks. Task classification is
done based on the value of the task MAR, i.e.,

ሻ݇ݏܽݐሺܥ ൌ ൜ܥ௟ ܴܣܯ௧௔௦௞ ൒ ௧௛ܴܣܯ
 ௛ܥ ݁ݏ݅ݓݎ݄݁ݐ݋

 (8)

where C(task) is an enumerated type describing the class of
the task and MARth is a threshold value used to partition the
tasks. When the apriori information about a task is not
available, WA assigns it to default class ILS, which allows
the task to run more power efficiently. Meanwhile, the WA
monitors and records its MAR for later reference. The MAR
values of tasks are recorded in a table, with least recently
used (LRU) replacement policy to limit the table size.
4.1.2. Workload Analysis and Prediction

The WA monitors and predicts the required throughput for
each task set, IPSh and IPSl, and the average characteristics of
tasks, e.g. IPCavg, to provide to the tier-one PM in order to
manage the core consolidation and coarse-grain DVFS
choices at each decision epoch. The prediction method used
can be a history-based prediction technique, whereby a
moving-window average of the task arrival rates and their
IPC values over the last few decision epochs is used as
estimates of the task arrival rate and IPC value in the next
decision epoch.

Next, based on the current state of the GQ and prediction
about task arrival rate, the WA determines the number of
tasks, W, in the GQ to be dispatched to cores in each
allocation window. The WA sets W such that the occupancy
level of the GQ remains nearly constant at some target level,
e.g. 50% (c.f. [18] for detailed analysis). This value is found
to be energy efficient for a single processor system, however,
the CMP can also be seen as a processor that is N-times
faster, and the incoming task rate is thus N times higher too.

The WA creates the ILS and IHS task sets running during
the decision period and calculates required throughput for
each set:

஼ܵܲܫ ൌ
∑ s୨୲ୟୱ୩ ௝ אC

ௗܶ
 (9)

where Td denotes the duration of the decision period and sj
denotes the expected job size of task j.
4.2. Tier-One PM

The job of Tier-One PM includes first finding the optimum
number of cores to run each class of tasks so as to minimize
PCMP. Then, it must assign a single target voltage and
frequency level to all the cores that are assigned to one class
(the v-f setting would be fine tuned by tier-three.)
4.2.1. Core Consolidation and Coarse-Grain DVFS

Armed with the task classification, the PMU allocates the
optimum number of cores to each class of tasks, and sets the
coarse-grain frequency (and hence, the supply voltage level)
of each core. The objective is to minimize the total power
consumption while satisfying the throughput constraint for
the task set in each class. Let nl, nh and N denote the number
of cores assigned to the ILS and IHS tasks and the CMP core
count. Tier-one power minimization problem can be
formulated as follows:
݊݅ܯ ஼ܲெ௉ ൌ ൫݊௟ · ௟݂

ଷ ൅ ݊௛ · ௛݂
ଷ൯ ܳ஽ ൅ ௖ܲ௢௠௠௢௡,௖௛௜௣

൅ ሺ݊௟ · ௜ܲௗ௟௘ሺ ௟݂ሻ ൅ ݊௛ · ௜ܲௗ௟௘ሺ ௛݂ሻሻ
(10)

Ghasemazar, Minimizing Power Consumption of a CMP…

.ݏ .ݐ

ە
ۖ
۔

ۖ
ۓ

݊௟ , ݊௛ ൒ 0 , ݊௟ ൅ ݊௛ ൑ ܰ
௠݂௜௡ ൑ ௟݂ ൑ ௨݂௡௦௟

௠݂௜௡ ൑ ௛݂ ൑ ௠݂௔௫
݊௟ · ௟,௔௩௚ሺܥܲܫ ௟݂ሻ · ௟݂ ൒ ܲܫ ௟ܵ
݊௛ · ௛,௔௩௚ሺܥܲܫ ௛݂ሻ · ௛݂ ൒ ௛ܵܲܫ

(11)

where fl and fh are the coarse-grain working frequencies for
the ILS and IHS cores, respectively. These two frequencies
together with the number of cores, nl and nh, assigned to each
task class are the optimization variables to be determined.
The first constraint limits the number of cores. Under the low
workload conditions, it may be prudent from a power-saving
perspective to turn off some of cores -this is why the
summation of the two types of cores can be less than N. The
second and third constraints bound fl and fh in the ranges (fmin,
funsl) and (fmin, fmax). The last two constraints are throughput
constraints for each task class. Here ܥܲܫ஼,௔௩௚ denotes the
average actual IPC values of all current tasks in the
corresponding class, C, assumed to be equal to measured IPC
value in the recent past by hardware performance counters
 [25].

Notice also that IPSl and IPSh have already been determined
by the WA from equation (9). This is a Non Linear Integer
Programming problem. Fortunately, since the range of
independent variables is small (few available frequency
levels and a limited number of cores on the chip,) a Branch
and Bound search method, as described below, is attractive
and computationally feasible. On line 12, the algorithm
searches for the best variable values (nl, nh, fl, fh) that
minimize the power dissipation.
1. S = {};
2. for (m = 0 to N; m++) do
3. for (fl = fmin to funsl; fstep++) do
4. nl=ඃܲܫ ௟ܵ/ሺܥܲܫ௟,௔௩௚ · ௟݂ሻඇ; // from the 4th constraint
5. nh = m – nl; // from the 1st constraint
6. ௛݂ ൌ ௛/ሺ݊௛ܵܲܫ · ௛,௔௩௚ሻ // from the 5th constraintܥܲܫ
7. calculate PCMP from (10) ;
8. s = (nl, nh, fl, fh, PCMP);
ࡿ .9 ൌ ࡿ ׫ ሼݏሽ;
10. end for
11. end for
12. smin = find_min (S);
13. return smin;

It can be shown that the complexity of our proposed
algorithm is O(N*F) due to two nested loops of lines 2 and 3,
where F is the number of frequency steps between fmin and
funsl.
4.3. Tier-Two PM

After classifying tasks into IHS and ILS, and deciding
about the number of high and low speed cores and their
corresponding coarse-grain v-f settings in the top-level PM,
TDU now assign the tasks to individual cores. It also
determines the target throughput for individual cores in high
speed and low speed categories.

4.3.1. Task Assignment
The task assignment scheme is shown in Figure 4. The

tasks in the GQ are passed through a switch where ILS and
IHS tasks are distinguished from each other and will be sent
to the corresponding Round Robin (RR) switches. Each RR
switch assigns its input tasks to LQ of an available core using
the round robin scheduling technique [11]. At each instance
of time, both RR switches have a list of the current available
cores. We define an available core as an active with Queue
Occupancy (QO) level less than a threshold value. If the next
core in the list of RR switch is not available, the RR switch
simply ignores that core and looks for the next available core.

Figure 4. Tier-2 task assignment scheme

4.3.2. Determining Target Throughput of Cores
Once tasks are assigned to cores, based on the set of tasks

that are assigned to each individual core, the mid-level PM
calculates the target throughput that must be used as the set
point in the feedback loop controller of the core (tier three
PM). The target throughput of a core, IPStarget, is equal to the
sum of the expected number of instructions in the assigned
tasks divided by the allocation period length. The calculation
for each core uses a similar equation as equation (9) except
that the task set is restricted to the tasks assigned to that core,
and Td is replaced by Ta. That is:

ܲܫ ௧ܵ௔௥௚௘௧ ൌ
∑ s୨୲ୟୱ୩ ௝ אC

௔ܶ
 (12)

Note that if the execution time of a task exceeds Ta, it is not
feasible to execute the complete task in a single allocation
period, and the corresponding core must continue running
such task for the next period. However, in order to calculate
the target throughput value for the core that is running this
task (with large expected execution time), the task is virtually
divided into two or more subtasks to be executed in
subsequent allocation periods. Therefore, only the portion of
task that is executed during each Ta period is considered in
the target throughput calculation of the core for that period.
4.4. Tier-Three PM

To maintain a target throughput, IPStarget, for each core, we
use the feedback control theory [26]. More precisely, we
model a processor core as a system, called Gs, whose input
vector is the v-f settings and whose output is the resulting
throughput of the core, IPS, as shown in Figure 5. The

ILS/IHS
Switch

RR
Switch

RR
Switch

LQ nlLQ 1 LQ nhLQ 1

GQ

QO1, …, QOnl QO1, …, QOnh

Low Speed Cores High Speed Cores

Ghasemazar, Minimizing Power Consumption of a CMP…

controller, shown by Gc in the figure, assigns a v-f setting for
the core. The system then employs this v-f setting, and the
resulting throughput is measured by means of the built-in
performance monitoring units (a core’s IPS value can be
measured on the fly by using the retired instruction count
measured by Hardware Performance Counters [24] in a time
interval). If the measured throughput is less than the target
throughput, the controller will increase the v-f setting value,
which results in higher throughput. On the other hand, if the
measured throughput is greater than the target throughput, the
controller will reduce the v-f setting value to match the
required throughput. This technique reduces power
consumption by performing DVFS to deliver only the
required throughput.

Figure 5. Closed loop system representation.

We can model the throughput of a core, given by (3), as a
linear function of its frequency, i.e., the input-output
relationship of the system, Gs, can be represented with a
linear function. Consequently, we can apply the linear control
techniques which are simple, effective, and accurate enough
for our purpose. Recall the controller needs to be embedded
in the PMU, and hence complex implementations are to be
avoided. There are many options for the type of linear
controller here. In this paper, we use a Proportional Integral
(PI) controller [26]. A PI controller is a special case of
Proportional Integral Derivative (PID) controllers that are
very easy to implement, and usually easy to design for a first-
order system [2] [8]. The derivative component of the general
PID controllers may amplify the effect of noise, and thus it is
not used in this work. To design the PI controller, we follow
the well established control theory techniques [26].

To use the linear control techniques, we first linearize the
relationship between throughput of a core and its frequency
around a frequency f0, by replacing ܥܲܫሺ݂ሻ in (3) with its
maximum value at f0 as a fixed value (using the maximum
value is to guarantee stability of the closed loop system):

ሺ݂ሻܵܲܫ ൌ ሺܥܲܫ ଴݂ሻ · ݂ (13)
where ܥܲܫሺ ଴݂ሻ is defined by (14), if the set of tasks in the
local queue have an average expected IPC of ܥܲܫ௔௩௚௡௖௠ and
average CMF of CMFavg. The value of IPC(f0) is
approximated at design time for worst case.

ሺܥܲܫ ଴݂ሻ ൌ max ሺ
௔௩௚௡௖௠ܥܲܫ

1 ൅ ௖ߙ · ௔௩௚௡௖௠ܥܲܫ · ௔௩௚ܨܯܥ · ଴݂
ሻ (14)

The transfer function of a PI controller in the z-domain is:
ሻݖ௖ሺܩ ൌ ௣ܭ ൅ ூܭ

ݖ
ݖ െ 1 (15)

where Kp and KI are coefficients to be determined based on
the desired characteristics of the closed loop system. Hence
the transfer function of the closed-loop control system may
be written as:

ሻݖሺܩ ൌ
ሻݖ௦ሺܩሻݖ௖ሺܩ

1 ൅ ሻݖ௦ሺܩሻݖ௖ሺܩ
 (16)

with a corresponding characteristic equation [26] as follows:
ଶݖ ൅ ൫ሺܭூ ൅ ௔௩௚ܥܲܫ௉ሻܭ െ 2൯ݖ ൅ 1 െ ௉ܭ · ௔௩௚ܥܲܫ ൌ 0 (17)
The solutions to the above equation are the closed-loop

poles of system, whose placement in the z-plane determines
the main characteristics of the system, such as its steady state
error, response time, overshoot and stability. To guarantee
stability of the loop, the poles should be placed inside the
Unit Circle of z-plane in the Root Locus of system [26]. For
our problem, the best placement of poles is found to be at
0.5±0.1i to generate a relatively fast and low-overshoot step
response as shown in Figure 6.

Figure 6. (a) Root Locus and (b) Step Response of the places poles.

5. EXPERIMENTAL RESULTS
We have developed a real-time simulator in C++ to

implement and evaluate the proposed power management
technique. The simulator uses an N-way CMP with shared L2
cache. The simulator is an event driven simulator, in which
the triggering events are task arrival, task departure, decision,
allocation, and sampling points. It emulates execution of the
tasks on the cores based on their size, IPCncm and CMF;
however, PMU decisions are made only by knowing size and
MAR of tasks, and estimating IPCC,avg’s on-line. The PMU,
GQ, LQ’s, and TDU are implemented in software.
Configuration of the cores is as described in Table 1, which is

Gs

f IPSGc
IPStarget

Ghasemazar, Minimizing Power Consumption of a CMP…

based on the configuration of UltraSPARC T2 (Niagra2)
processor [27]. The dynamic and idle power consumption of
CMP are modeled as presented in equation (6) with the
coefficients matching the target processor’s power
characteristics. The proposed PM technique shown in Figure
3 (called 3T-PM) was implemented, as well as another
baseline PM algorithm. For the purpose of comparison, no
prior work is found that tackles the same power management
problem that we have solved. For example, reference [1] that
is the closest to our problem, ignores core consolidation and
also is based on life-time fixed task to core assignment.
References [2] [3] are also lacking dynamic task to core
assignment phase. Therefore, a direct comparison with a
specific prior work is not possible. However, to evaluate 3T-
PM’s performance, we compare it to a baseline PM which
can be seen as a modified version of the work presented in
 [1]. The baseline PM does not support core consolidation;
neither does it classify the tasks into IHS and ILS. Round
robin is used for task assignment in the baseline PM. Also, to
study the efficiency of control-theory feedback loop, the
baseline PM comes with per-core open loop DVFS
capability, which indeed is different from non-control-theory
closed loop DVFS of [1]. In order to realize DVFS, the
baseline PM utilizes information about tasks to determine the
required frequency that satisfies system throughput, and uses
a higher core frequency value, as a safety margin, to take into
account the uncertainty of those values.
5.1. Task Generation

Tasks are randomly generated and sent to the CMP. The
expected job size and inter-arrival time of tasks are assumed
to be two independent random variables with exponential
distributions with mean values of E(s) and 1/E(λ),
respectively. Note that in order to avoid overflow, the
average of task arrival rate is set to less than or equal to the
maximum processing capacity of CMP. In other words, the
mean value of task inter-arrival time is greater than or equal
to the expected execution time (mean of expected job size,
divided by product of the average IPC of tasks and the
maximum core frequency) divided by N, total number of
cores. Each incoming task is assumed to be generated by one
of the nine applications (benchmarks) given in Table 2. The
MAR values of tasks are assigned based on MAR of
SPEC2000 benchmarks [28]. The detailed micro-architecture
task characteristics used to emulate task execution in our
simulator, i.e. IPCncm and CMF are extracted by SimpleScalar
simulations and shown in Table 2. In order to choose the
parent application of each incoming task, we use a discrete
uniform random variable that selects from the nine
benchmarks given in Table 2 with equal probability, p=1/9.
This means that the characteristic values for incoming tasks
are picked from the values given in Table 2 with equal
probability of p=1/9. In order to model the uncertainty of the
information about the tasks, we apply a ±20% uniform
disturbance to the values of task characteristics at runtime,
before issuing the task to CMP.

Table 1. Configurations of the cores in CMP system

Pipeline stages 8 (int), 12 (fp)
Execution units 2 INT units, 1 FP unit
Issue queue size 20
Load/Store queue 32/32
L1 instruction/data cache 16KB, 8-way/8KB, 4-way/LRU
L2 unified cache N*512KB, 16-way, 64B line
Technology node/Vdd 65nm, 1.5V
Frequency {200:200+:1600} MHz
Typical Dynamic Power 8.9W @ fmax
Typical Leakage Power 2.9W

Table 2. Average characteristics of benchmarks used to generate tasks

Benchmark MAR IPCncm CMF
Art 16% 0.816 0.0488
Bzip 18% 0.902 0.0685
Equake 7% 1.850 0.0065
Gcc 14% 0.876 0.0392
Go 9% 0.773 0.0188
Gzip 26% 0.869 0.0865
Mcf 23% 2.221 0.0629
Mesa 13% 1.923 0.0272
Twolf 8% 1.205 0.0172

Table 3 summarizes the parameters used in the simulation.

Table 3. Simulation parameters
Number of Cores N= {4, 8, 16}
funsl 800MHz
LQ / GQ 8 / 40,80,160
Td / Ta / Ts 50 / 10 / 2ms

MARth %15

Qd 60%
E(s) 1 M instructions
E(λ) 1.0N, 1.9N [1/ms]

Number of simulated task 5000

5.2. Results

For the purpose of comparison, we compare the proposed
3T-PM algorithm to the baseline power management
algorithm described earlier in this section. It does not support
core consolidation, task classification, or control-theory
feedback loop. Figure 7 shows the average power
consumption of the CMP system under the baseline solution
and the 3T-PM solution. The experiments were done for three
different CMP configurations with N=4, N=8, and N=16
cores, and under two system throughput constraints, low and
high corresponding to 30% and 80% of the maximum
processing capacity of CMP, respectively. On average, 3T-
PM consumes 23% less power compared to baseline PM.

Ghasemazar, Minimizing Power Consumption of a CMP…

Figure 7. Power consumption of 3T-PM solution vs. baseline
PM for three CMP configurations and arrival rates.

Figure 8 depicts waveforms of frequency set by DVFS
method of 3T-PM and the baseline PM for one core to
compare the effect of PI controller-based DVFS with the
open loop DVFS. The throughput constraint for both systems
is the same and is shown in the figure with blue color, and
none of the PM techniques violate the throughput constraint.
It can be seen from the figure that the core frequency level
used by 3T-PM is (on average) around 7% lower than the
frequency level used by the baseline technique. Note that in
this example, 3T-PM is about 17% more power efficient
compared to the baseline system.

Figure 8. Frequency waveforms used by 3T-PM and baseline PM for
the same throughput constraint.

In addition to power minimization, our PM performs better
in terms of performance compared to an improved version of
the baseline which now employs closed loop DVFS as
explained in section 4.4. In particular, we considered very
high task arrival rates that pushed the CMP to its processing
capacity limit, hence resulting in sizable task drop rate at the
global queue of the CMP system. Under this scenario, our
method shows an average of 18% lower task drop rate, with
7% lower power consumption. Note that the size of GQ was
set to the same value in both cases. The reason lies in the
separation of IHS and ILS tasks to run on different cores in
our method, which prevents unnecessary wait of the IHS
tasks for the ILS tasks in the GQ.

Figure 9. Task loss rate improvement due to the task classification

step in the 3T-PM solution.

Figure 9 shows this fact, which can also be interpreted as
the higher quality of service (QoS) of the 3T-PM solution
compared to the baseline one with feedback, under very high
task arrival rate. Finally, in the experiments we performed for
various core counts (up to 16) and workload configurations,
the power and performance overheads of 3T-PM are
negligible. More precisely, the 3T-PM runtime at each tier is
negligible compared to the epoch length, i.e., it is less than
1%. Since the algorithm is software based, its power
consumption overhead is linearly related to the ratio of
execution time of PMU code to that of the applications;
hence, the power dissipation overhead of 3T-PM is also
insignificant, the same as its runtime overhead.

6. CONCLUSION
We formulated the problem of minimizing the power

consumption of a chip multiprocessor system under an
average throughput constraint. DVFS and core consolidation
along with task assignment methods are employed as part of
our solution framework. In particular, we introduced a
hierarchical global power manager comprised of three tiers
performing core consolidation and coarse-grain DVFS at top
tier, assigning the tasks to available cores considering server
and task affinities at mid-tier, and closed-loop feedback based
per-core DVFS at the low-tier.

The proposed PM suffers from a number of limitations
which can be summarized as follows: (i) it focuses on
independent tasks and ignores communication between the
tasks, and also parallel and multi-threaded tasks, which will
be studied as the future work and (ii) relying on a centralized
TDU limits the scalability of the proposed 3T-PM to large
number of cores. The reason of using a centralized dispatch
mechanism is to have better control on task assignment, while
a distributed task fetch mechanism would give better
scalability with cost of less controllability over optimality of
task assignment. Furthermore it does not consider
heterogeneous multi-core processors, which is again our
future work. Comparison of this technique to a baseline one
showed 23% power saving for our technique, which also
resulted in some 18% lower task drop rate under stringent
throughput constraints for the target CMP system.
Considering the promising simulation results, we would like
to implement 3T-PM algorithm into the kernel of an open-
source operating system and evaluate its performance and
power saving in a physical CMP.

0

20

40

60

80

100

120

140

160

180

low high low high low high

Throughput

Baseline 3T‐PM

16 cores

8 cores

4 coresPo
w
er
 [W

]

1

2

3

4

5

6

7

8

0

200

400

600

800

1000

1200

1400

1600

1800

2 18 34 50 66 82 98 11
4

13
0

14
6

16
2

17
8

19
4

21
0

22
6

24
2

25
8

27
4

29
0

30
6

32
2

33
8

35
4

37
0

38
6

Th
ro
ug
hp
ut
 [1

00
0M

IP
S]

Fr
eq
ue
nc
y
[M

H
z]

Time [ms]

f_baseline f_3TPM Throughput

0

0.1

0.2

0.3

0.4

0.5

4 8 16

Proposed Heurisrtic

baseline method

Number of Cores

Ta
sk

dr
op

 r
at
e

Ghasemazar, Minimizing Power Consumption of a CMP…

Finally, a more sophisticated task assignment algorithm,
based on the Limited Minimum Intervening (LMI) task
scheduling policy of [29], can be developed to further
improve the power efficiency by considering cache affinity to
reduce CMF. More precisely, we will build a weighted graph
of tasks and cores, and define task-to-core and inter-task
affinity factors. Next we will develop an algorithm, based on
Fiduccia-Mattheyes heuristic solution to the VLSI CAD
partitioning problem [30], to optimally assign tasks to cores
considering the given cache affinity factors.

REFERENCES
[1] C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose, and M.

Martonosi, “An Analysis of Efficient Multi-Core Global
Power Management Policies: Maximizing Performance
for a Given Power Budget,” Proc. IEEE/ACM int’l Symp.
on Microarchitecture, 2006.

[2] S. Herbert, D. Marculescu, “Analysis of dynamic
voltage/frequency scaling in chip-multiprocessors,”
Proc. of Int’l Symp. on Low Power Electronics and
Design, 2007.

[3] J. Sharkey, A. Buyuktosunoglu, and P. Bose, “Evaluating
Design Tradeoffs in On-Chip Power Management for
CMPs,” Proc. of Int’l Symp. on Low Power Electronics
and Design, 2007.

[4] J. Li, J. F. Martinez, “Dynamic power-performance
adaptation of parallel computation on chip
multiprocessors,” Proc. Int’l Symp. on High-
Performance Computer Architecture, 2006.

[5] R. Kumar, D. M. Tullsen, N. P. Jouppi, P. Ranganathan,
“Heterogeneous Chip Multiprocessors”, IEEE Computer,
38(11):32–38, 2005.

[6] S. Ghiasi, T. Keller, F. Rawson, “Scheduling for
heterogeneous processors in server systems,” Proc. of the
2nd Conf. on Computing Frontiers 2005.

[7] R. Rao and S. Vrudhula, “Efficient online computation
of core speeds to maximize the throughput of thermally
constrained multi-core processors,” Proc. of Int’l Conf.
on Computer-Aided Design, 2008.

[8] F. Xia, Y.-C. Tian, Y. Sun, J. Dong, “Control- Theoretic
Dynamic Voltage Scaling for Embedded Controllers,”
IET Computers and Digital Techniques, 2008.

[9] H. Aydin, Q. Yang, “Energy-Aware Partitioning for
Multiprocessor Real-Time Systems," Proc. Int’l Symp.
on Parallel and Distributed Processing, 2003.

[10] Y. Xie, W. Wolf, “Allocation and scheduling of
conditional task graph in hardware/software co-
synthesis,” Proc. conf. on Design Automation and Test in
Europe, 2001.

[11] M. Harchol-Balter, M. E. Crovella, C. Murta, “On
choosing a task assignment policy for distributed server
system,” IEEE Journal of Parallel and Distributed
Computing, vol59, 1999.

[12] M. Annavaram, E. Grochowski, J. Shen, “Mitigating
Amdahl's Law through EPI Throttling,” Proc. of 32nd
Annual int’l Symp. on Computer Architecture, 2005.

[13] I. Yeo, C.C. Liu, E.J. Kim, “Predictive dynamic thermal
management for multicore systems,” Proc. of the 45th
Annual Design Automation Conference, 2008.

[14] M. Gomaa, M.D. Powell, T. Vijaykumar, “Heat-and-run:
leveraging SMT and CMP to manage power density
through the operating system,” SIGOPS Operating
System Review, 2004.

[15] G. Qu, “Power Management of Multicore Multiple
Voltage embedded Systems by Task Scheduling,” Proc.
Int’l Conf. on Parallel Processing Workshops, 2007, pp.
78-83.

[16] K. Choi, R. Soma and M. Pedram, “Dynamic voltage and
frequency scaling based on workload decomposition,”
Proc. of Int’l Symp. on Low Power Electronics and
Design, Aug. 2004, pp. 174-179.

[17] J. Donald and M. Martonosi, “Techniques for Multicore
Thermal Management: Classification and New
Exploration,” SIGARCH Computer Architecture News,
2006.

[18] P. Juang, Q. Wu, L. Peh, M. Martonosi, D.W. Clark,
“Coordinated, distributed, formal energy management of
chip multiprocessors,” Proc. of int’l Symp. on Low
Power Electronics and Design, 2005.

[19] W. Kim, M. Gupta, G. Y. Wei, D. Brook, “System level
analysis of fast, per-core DVFS using on-chip switching
regulators,” Proc. Int’l Symp. on High-Performance
Computer Architecture, 2008.

[20] http://www.intel.com/products/processor_number/chart/x
eon.htm [online]

[21] P. Rong and M. Pedram, “Energy-aware task scheduling
and dynamic voltage scaling in a real-time system,” Int'l
Journal of Low Power Electronics, American Scientific
Publishers, Vol. 4, No. 1, Apr. 2008.

[22] S. L. Hary, and F Ozguner, “Precedence-Constrained
Task Allocation onto Point-to-Point Networks for
Pipelined Execution,” IEEE Trans. on Parallel and
Distributed Systems, vol. 10, no. 8, Aug. 1999.

[23] SPEC Web2009, [online] http://www.spec.org/web2009
[24] Intel Corp, Intel® 64 and IA-32 Architectures Software

Developer’s Manual, 2009, [online]
http://www.intel.com/products/processor/manuals/

[25] M. Zagha, et al., “Performance analysis using the MIPS
R10000 performance counters,” Proc. Conf. on
Supercomputing , 1996.

[26] R. C. Dorf, R. H. Bishop, Modern Control Systems,
Prentice Hall, 2008.

[27] M. Shah, et al., “UltraSPARC T2: A Highly-Threaded,
Power-Efficient, SPARC SOC,” Proc. of Asian Solid-
State Circuits Conference, Nov. 2007.

[28] SPEC2000, [online] http://www.spec.org/
[29] M. S. Squilante and E. D. Lazowska, “Using processor-

cache affinity information in shared-memory
multiprocessor scheduling,” IEEE Trans. Parallel
Distrib. Syst., vol. 4, Feb. 1993.

[30] M.A. Breuer, Design Automation of Digital Systems:
Theory and Techniques, Prentice Hall, 1975.

