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ABSTRACT - In a multi-core system, power and performance 
may be dynamically traded off by utilizing power 
management (PM). This paper addresses the problem of 
minimizing the total power consumption of a Chip 
Multiprocessor (CMP) while maintaining a target average 
throughput. The proposed solution relies on a hierarchical 
framework, which employs core consolidation, coarse-grain 
dynamic voltage and frequency scaling (DVFS), and task 
assignment at the CMP level and fine-grain DVFS based on 
closed-loop feedback control at the individual core level. Our 
experimental results are very favorable showing noticeable 
average power saving compared to a baseline technique, and 
demonstrate the high efficacy of the proposed hierarchical 
PM framework. 
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1. INTRODUCTION 
With the increase in demand for high performance 

processors, Chip Multiprocessor (CMP) architectures have 
been introduced to enable continued performance scaling in 
spite of the slow-down of the CMOS technology scaling. At 
the same time the demand for higher processing power is 
causing the need for power and energy efficient design of 
multi-core processing platforms. As technology continues to 
scale to smaller feature sizes, power dissipation and die 
temperature have become the main design concerns and key 
performance limiters in processor design. 

The problem of power efficient multiprocessor design has 
been extensively studied in the literature. Prior studies 
propose dynamic power/thermal management for 
homogeneous  [1]- [4] or heterogeneous multicore 
architectures  [5] [6].  The real-time power management 
techniques include local responses at the core-level  [2] [7] [8] 
or global task scheduling heuristics  [6] [9]- [11]. Typically, the 
problem formulations target performance optimization under 
a power/energy budget  [1] [3] or a thermal constraint  [7] [12]-
 [14], or attempt to minimize a composite cost function in the 
form of energy per throughput  [5] [12]. Minimization of the 
total power consumption of a general-purpose CMP system 
while meeting a total throughput constraint  [4] [15] is an 

equally interesting problem, which is the focus of the present 
paper. Our solution framework solves the power management 
problem for such a CMP system through concurrent core 
consolidation, task assignment to cores, and core-level 
DVFS.  

Dynamic Voltage and Frequency Scaling (DVFS) for single 
processor systems is well understood and standardized  [16]. 
However, due to key differences between single-core and 
multicore systems, there are a number of options in applying 
DVFS to CMP platforms  [3] [17] [18]. In particular, DVFS in 
such systems can be applied in one of two ways: chip-wide 
 [2] [3] or per-core  [1] [18] [19]. Moreover, DVFS may be 
combined with power gating (shutdown) to a portion of the 
chip. Finally, performance of the CMP system is strongly 
influenced by the task to core assignment, and thus, DVFS 
should be combined with (or at least solved in light of) task 
assignment  [9].  

In  [4], the authors address the problem of finding a chip-
wide operating voltage-frequency (v-f) setting as well as 
finding the number of active cores that minimize power 
consumption of a CMP under a performance constraint. The 
proposed method uses an offline characterization of the 
system power and performance for target application and a 
hill-climbing search method to find the optimal solution, and 
therefore is costly to be a general purpose runtime power 
management technique. Reference  [15] formulates the 
problem of minimizing total power consumption of a multi-
core system subject to a throughput constraint by means of 
dynamic voltage scaling and task scheduling, and proves it to 
be NP-hard. A heuristic is then presented for the case of 
queued tasks, which is based on performing exhaustive 
search in the state transition space at each task execution 
point. The shortcomings of this work include the high 
complexity of the proposed solution, and the fact that it does 
not utilize core-shut down as a way of saving power. In  [2], 
the authors deploy a control theory based controller (PI 
controller) to perform DVFS in CMPs at runtime. Similarly, 
the limitation of this work is that it does not consider the 
potential power saving of changing the number of the active 
cores. In  [1], the authors introduce the concept of a global 
power manager which senses the per-core power and 
performance of a CMP and sets the operating power mode of 
each core while meeting a target power budget. One of the 
limitations of this work is also that independent of the amount 
of the workload that is given to the CMP, the number of the 
active cores is always fixed. This results in sub-optimal 
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become a bottleneck for the system due to PMU’s limited 
bandwidth for collecting runtime data about cores and the 
growing overhead of detailed data processing and decision 
making as the number of cores goes up. The latter realization 
helps with the scalability of the PM framework with respect 
the number of cores in the system. In addition in our 
proposed hierarchical framework, the top tiers of PM perform 
a quick (low overhead) global data processing and decision 
making at the system level, whereas the low-tier PM 
performs detailed decisions at the core level. 

The disparate applications are assigned to the cores by the 
TDU, which is a part of the OS code. Depending on the size 
of the CMP, i.e., number of cores in the system, the TDU can 
be realized in a centralized or distributed manner. In this 
paper, we assume a centralized TDU implementation. The 
GQ is typically implemented in software as part of the OS 
kernel while the LQ’s are implemented as part of the local 
power management codes that run on the individual cores.  
2.2. Throughput Model  

Throughput of a processor core is defined as the average 
number of executed instructions per second and is denoted by 
instructions per second or IPS for short. If a core that is 
running at frequency f executes task j with known 
characteristics, then the time t0 needed to run I0 instructions 
can be estimated by equation (1), in which the first term 
represents the computation time and the second term accounts 
for the delay of accessing higher level caches.  

଴ݐ ൌ
଴ܫ

௝௡௖௠ܥܲܫ · ݂ ൅ ௖ߙ · ௝ܨܯܥ ·  ଴ (1)ܫ

where CMFj denotes cache miss frequency, i.e. the proportion 
of instructions that cause an L1 cache miss while executing 
task j; ߙc is a fixed parameter representing average cache 
miss penalty which captures the core’s expected stall time 
when a cache miss occurs. The value of ߙc depends on 
parameters such as the pipeline implementation, cache size, 
cache management policy, and speed of the L2 cache and 
main memory. IPCj

ncm denotes the no-cache-miss instruction 
per cycle of the task; it is defined as the IPC value under a 
condition that there are no cache misses, e.g. very large cache 
that has all the application data pre-fetched, and thus no 
misses occur.  

Recall CMF is a micro-architecture level parameter that 
indicates the number of memory accesses of a task missing in 
the L1 cache. In fact, it can be interpreted as a translation of 
high level MAR in the architecture level; in general, a CPU-
intensive task, i.e. low MAR, has a low CMF value while a 
memory-intensive task, i.e. high MAR, exhibits a high CMF 
(although, a memory-intensive task may have a low CMF due 
to its special memory access pattern). Here, we use CMF and 
MAR interchangeably to distinct the memory-intensive and 
CPU-intensive tasks. Also, note that CMFj in (3) represents 
average cache miss frequency due to both instruction and 
data cache misses (denoted by ܨܯܥ௝௜௡௦௧ and ܨܯܥ௝ௗ௔௧௔ 
respectively):  

௝ܨܯܥ ൌ ௝௜௡௦௧ܨܯܥ ൅ ௗߨ ·  ௝ௗ௔௧௔ (2)ܨܯܥ

where ߨௗ is the fraction of instructions accessing data 
memory (typical value between 0.1 and 0.6). 

Referring to the definition of throughput, throughput of the 
core i is calculated as follows using (3): 

ܲܫ ௜ܵሺ݂ሻ ൌ ௝ሺ݂ሻܥܲܫ · ݂ 

௝ሺ݂ሻܥܲܫ ൌ
݆݉ܿ݊ܥܲܫ

1 ൅ ௖ߙ · ௝௡௖௠ܥܲܫ · ௝ܨܯܥ · ݂
 (3) 

where IPCj(f) denotes the actual IPC value of the task 
running on the core.  
2.3. IPS Saturation Effect 

Figure 2 shows the relationship between IPS and frequency 
as captured in equation (3) for different types of tasks. Figure 
2-a corresponds to three low-CMF tasks with high, medium 
and low IPCncm values, while Figure 2-b shows three high-
CMF tasks with high, medium and low IPCncm values.  

 
 

Figure 2. Throughput-frequency relationship for (a) low CMF tasks (b) 
high CMF tasks. 

From the Figure 2-b, domain of the IPS function of high 
CMF tasks can be divided into two regions: a frequency 
region where IPS rises rapidly with an increase in f and 
another where rate of change of IPS with f is low. We define 
a unit-slope frequency separating these two regions: 

௨݂௡௦௟ ൌ ݂
ฬడூ௉ௌడ௙ ୀଵ

 (4) 

where డூ௉ௌ
డ௙
  is the partial derivative of the IPS with respect to 

frequency (normalized appropriately to produce a unit-slope 
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value). For example in Figure 2-b, funsl for high CMF and 
high IPCncm tasks is about 710MHz, which is illustrated by a 
dashed line. For different combinations of IPCncm and CMF, 
the unit-slope frequency may be calculated for the 
corresponding task type. In practice, there is uncertainty 
about the predictive values of IPCncm and CMF of an 
incoming task, and hence funsl cannot be calculated accurately 
for a task in future. In practice, a single average funsl is 
assumed for all memory intensive tasks to lower the 
complexity. Note that if a task has a high CMF value, much 
of the time the core is waiting idle for the memory response, 
and hence, clock frequency can be set to a relatively low 
value, to reduce power/energy with no or very little 
performance loss. Therefore to reduce the runtime of the 
consolidation and coarse-grain DVFS steps, we will limit the 
clock frequency of a core running specific type of task to 
frequencies below the funsl (cf. section  4.1).  

3. PROBLEM STATEMENT 
Consider an N-way CMP as described in section  2.1. The 

PMU seeks to minimize the total power consumption of the 
CMP subject to achieving a service rate whereby a GQ 
overflow does not occur. This means that on average, CMP 
service rate must be greater than or equal to the rate of the 
incoming tasks. This is equivalent to imposing a lower bound 
constraint on the average throughput of the CMP.  

The problem statement can be written as follows: 
ሼ݊݅ܯ ஼ܲெ௉ሽ  ݏ.  ߤ  .ݐ ൒  (5) ߣ 

where PCMP denotes the CMP power (see equation (7)), λ is 
the rate of the incoming tasks (arrival rate of the tasks in the 
GQ), and μ is the CMP service rate (departure rate of the 
tasks from the GQ). To solve this problem, the power 
management algorithm needs to decide on the optimum 
number of the processing cores that are required to service 
the tasks, determine the v-f setting of each active core, and 
assign and schedule the tasks in the GQ to different cores. 
Moreover, the predictive input information of the system, 
such as the task characteristics (as described in section  2.1) 
are prone to uncertainty and inaccuracy, and a mechanism 
needs to be adopted to opt out the effect of inaccurate data.  
Due to the real time nature of the problem, conventional 
mathematical optimization approaches do not result in a 
robust solution to this problem. We want to utilize an 
efficient (light and thin) and robust algorithm to solve it..  

To estimate the power consumption of the CMP, we use a 
power model which is the summation of the intra-core power 
dissipation and the CMP-level power contribution of the core. 
The intra-core power dissipation is comprised of a dynamic 
power which is cubically dependent on the core’s clock 
frequency (assuming that the frequency f is directly 
proportional to the core’s supply voltage level V) and an v-f 
setting dependent idle component, Pidle(f). The second 
component of CMP’s core power dissipation is Pcommon,chip 
(also denoted by PC) which is comprised of power 
consumption of the shared resources in the CMP system, 
most importantly the L2 cache and I/O interface. This power 
component is independent of the frequency of any core. 

௖ܲ௢௥௘,௜௡௧௥௔ ൌ ܳ஽ · ݂ଷ ൅ ௜ܲௗ௟௘ሺ݂ሻ 
௖ܲ௢௠௠௢௡,௖௛௜௣ ൌ   ௅ܲଶ ൅ ூܲ/ை (6) 

where QD in the Pcore,intra expression is a constant 
(implementation and CMP platform-dependent) term while 
Pidle(f) is the idle power consumption for each core which is a 
function of the frequency. Pidle(f) at different frequencies, f 
values, can be measured offline and the values can be kept in 
a lookup table. PL2 and PI/O –that are frequency independent - 
denote constant terms capturing the power dissipation of the 
L2 cache and I/O interface of the CMP. We have: 

஼ܲெ௉ ൌ෍ܽܿ݁ݒ݅ݐሺ݅ሻ · ௖ܲ௢௥௘,௜௡௧௥௔ሺ݅ሻ
ெ

௜ୀଵ

൅ ௖ܲ௢௠௠௢௡,௖௛௜௣ (7) 

where active(i) is a pseudo-Boolean variable set to 1 exactly 
if the ith core is active. In this model, it is assumed that at 
least one core is active in the CMP, executing arrived tasks 
and the PMU application.  

4. PROPOSED SOLUTION 
We introduce an efficient strategy that solves the policy 

optimization problem described above. The proposed solution 
relies on a 3-tier hierarchical DPM approach (that we call 3T-
PM) where the original problem is broken into three 
optimization problems based on the significance and the 
granularity level of the decisions that must be made. Higher 
level DPM sets values of the input parameters of the lower 
levels. Decisions at the top level are made based on coarse-
grain information about the target task set (e.g., predicted 
MAR value for tasks in the GQ) whereas the lower level 
decisions are made based on characteristics of individual 
tasks.  

Figure 3. Block diagram of the proposed three-tiered PM. 

Figure 3 shows the block diagram of the proposed 
hierarchical PMU. The PMU attempts to minimize the CMP 
power consumption while ensuring that the CMP throughput 
is higher than a minimum threshold value. This is done by: 

a) Choosing the optimum number of the cores required to 
maintain the required throughput and turning the rest of 
the cores off (see tier 1 in Figure 3); 

Tier3

Workload Analyzer/Predictor

Task Assignment, Set‐point  for 
individual High Speed cores

Feedback 
loop DVFS

Feedback 
loop DVFS

Task Assignment, Set‐point  for 
individual Low Speed cores

Feedback 
loop DVFS

Feedback 
loop DVFS

Throughput 
Set‐point

Number & initial 
frequency of High 
Speed cores  (nh, fh)

General performance 
requirements:  IPSh, IPSl

Profile 
ILS tasks

Number & initial 
frequency of Low 
Speed cores  (nl, fl)

Number of cores per task type, Coarse grain DVFS

Profile of 
IHS tasks

Throughput 
Set‐point

Tier1

Tier2

… …

Core 1 Core nh Core nh +1 Core nl+nh
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b) Dividing the total active cores in two groups: high speed 
and low speed cores where the target working 
frequencies for high speed and low speed cores are set 
(we call this optimization core consolidation and coarse-
grain DVFS, see tier 1 in Figure 3); 

c) Assigning tasks from the GQ into the LQ of different 
active cores (this task assignment step is done separately 
for high and low speed cores, see tier 2 in Figure 3); 

d) Setting the target average throughput value (so-called 
“set point”) for each core considering the task 
assignments, such that the system-level throughput 
constraint –in the form of task processing rate- is 
satisfied (see tier 2 in Figure 3); 

e) Dynamically tuning voltage-frequency level of each 
active core by using a local control feedback loop for 
each core (we call this step fine-grain DVFS, see tier 3 in 
Figure 3). 

Decisions at each tier of the PM hierarchy are performed 
regularly, but with different frequencies. Tier 1 decisions are 
made at each decision epoch, Td. Task assignment is done as 
part of the second tier optimization at each allocation window 
Ta, where Ta < Td. The third tier decision making is done with 
period of Ts, which denotes the sampling period of the digital 
feedback control loop of each core. Typically Ts < Ta, such 
that the lower level controller iterates for enough sampling 
periods and becomes stable within the Ta period. This means 
the stability of two tiers are independent as long as they are 
operating according to the specification. Furthermore, note 
that the hierarchical structure of the solution implies that a 
higher level PM makes a decision that sets the target 
(aspiration level) for lower levels, and decisions lower levels 
only satisfy these targets i.e. they cannot damage higher level 
decisions, as long as target points are feasible.  
4.1. Workload Analyzer 

The task of Workload Analyzer (WA) is monitoring the 
incoming tasks at the GQ to (i) classify them based on their 
IPC characteristics, and (ii) predict the future workload both 
in terms of its arrival rate and its IPC characteristics. The 
decision about the amount of workload that needs to be 
processed at each decision epoch is also made at this time. 
This decision is made so that, on average, queue overflow is 
avoided. The WA aims to keep the average queue occupancy 
of the GQ at a constant level, which of course implies that the 
service rate ߤ matches the demand rate ߣ. In fact, if this 
condition is held, CMP has supplied just enough performance 
to satisfy the throughput requirement of the system and save 
power as much as possible. 
4.1.1. Task Classification  

As mentioned earlier, MAR indicate if the task is a CPU-
intensive or memory-intensive task. Two classes of tasks are 
defined based on their MAR values on the given cores: 
Intrinsically Low Speed (ILS, or l for short) and Intrinsically 
High Speed (IHS, or h for short) tasks. Task classification is 
done based on the value of the task MAR, i.e.,  

ሻ݇ݏܽݐሺܥ ൌ ൜ܥ௟   ܴܣܯ௧௔௦௞ ൒ ௧௛ܴܣܯ
                 ௛ܥ ݁ݏ݅ݓݎ݄݁ݐ݋ 

 (8) 

where C(task) is an enumerated type describing the class of 
the task and MARth is a threshold value used to partition the 
tasks. When the apriori information about a task is not 
available, WA assigns it to default class ILS, which allows 
the task to run more power efficiently. Meanwhile, the WA 
monitors and records its MAR for later reference. The MAR 
values of tasks are recorded in a table, with least recently 
used (LRU) replacement policy to limit the table size. 
4.1.2. Workload Analysis and Prediction 

The WA monitors and predicts the required throughput for 
each task set, IPSh and IPSl, and the average characteristics of 
tasks, e.g. IPCavg, to provide to the tier-one PM in order to 
manage the core consolidation and coarse-grain DVFS 
choices at each decision epoch. The prediction method used 
can be a history-based prediction technique, whereby a 
moving-window average of the task arrival rates and their 
IPC values over the last few decision epochs is used as 
estimates of the task arrival rate and IPC value in the next 
decision epoch.  

Next, based on the current state of the GQ and prediction 
about task arrival rate, the WA determines the number of 
tasks, W, in the GQ to be dispatched to cores in each 
allocation window. The WA sets W such that the occupancy 
level of the GQ remains nearly constant at some target level, 
e.g. 50% (c.f.   [18] for detailed analysis). This value is found 
to be energy efficient for a single processor system, however, 
the CMP can also be seen as a processor that is N-times 
faster, and the incoming task rate is thus N times higher too. 

The WA creates the ILS and IHS task sets running during 
the decision period and calculates required throughput for 
each set: 

஼ܵܲܫ ൌ
∑ s୨୲ୟୱ୩ ௝ אC

ௗܶ
 (9) 

where Td denotes the duration of the decision period and  sj 
denotes the expected job size of task j. 
4.2. Tier-One PM 

The job of Tier-One PM includes first finding the optimum 
number of cores to run each class of tasks so as to minimize 
PCMP. Then, it must assign a single target voltage and 
frequency level to all the cores that are assigned to one class 
(the v-f setting would be fine tuned by tier-three.) 
4.2.1. Core Consolidation and Coarse-Grain DVFS 

Armed with the task classification, the PMU allocates the 
optimum number of cores to each class of tasks, and sets the 
coarse-grain frequency (and hence, the supply voltage level) 
of each core. The objective is to minimize the total power 
consumption while satisfying the throughput constraint for 
the task set in each class. Let nl, nh and N denote the number 
of cores assigned to the ILS and IHS tasks and the CMP core 
count. Tier-one power minimization problem can be 
formulated as follows: 
݊݅ܯ ஼ܲெ௉ ൌ ൫݊௟ · ௟݂

ଷ ൅ ݊௛ · ௛݂
ଷ൯ ܳ஽ ൅ ௖ܲ௢௠௠௢௡,௖௛௜௣

൅ ሺ݊௟ · ௜ܲௗ௟௘ሺ ௟݂ሻ ൅ ݊௛ · ௜ܲௗ௟௘ሺ ௛݂ሻሻ 
(10) 
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(11) 

where fl and fh are the coarse-grain working frequencies for 
the ILS and IHS cores,  respectively. These two frequencies 
together with the number of cores, nl and nh, assigned to each 
task class are the optimization variables to be determined. 
The first constraint limits the number of cores. Under the low 
workload conditions, it may be prudent from a power-saving 
perspective to turn off some of cores -this is why the 
summation of the two types of cores can be less than N. The 
second and third constraints bound fl and fh in the ranges (fmin, 
funsl) and (fmin, fmax). The last two constraints are throughput 
constraints for each task class. Here ܥܲܫ஼,௔௩௚ denotes the 
average actual IPC values of all current tasks in the 
corresponding class, C, assumed to be equal to measured IPC 
value in the recent past by hardware performance counters 
 [25]. 

Notice also that IPSl and IPSh have already been determined 
by the WA from equation (9). This is a Non Linear Integer 
Programming problem. Fortunately, since the range of 
independent variables is small (few available frequency 
levels and a limited number of cores on the chip,) a Branch 
and Bound search method, as described below, is attractive 
and computationally feasible. On line 12, the algorithm 
searches for the best variable values (nl, nh, fl, fh) that 
minimize the power dissipation. 
1.  S = {};  
2.  for (m = 0 to N; m++) do 
3.    for (fl = fmin to funsl; fstep++) do 
4.       nl=ඃܲܫ ௟ܵ/ሺܥܲܫ௟,௔௩௚ · ௟݂ሻඇ;    // from the 4th constraint  
5.       nh = m – nl;                            // from the 1st constraint  
6.       ௛݂ ൌ ௛/ሺ݊௛ܵܲܫ ·   ௛,௔௩௚ሻ  // from the 5th constraintܥܲܫ
7.      calculate PCMP from (10) ; 
8.       s = (nl, nh, fl, fh, PCMP); 
ࡿ       .9 ൌ ࡿ ׫ ሼݏሽ; 
10.   end for 
11. end for 
12. smin = find_min (S); 
13. return smin;  

It can be shown that the complexity of our proposed 
algorithm is O(N*F) due to two nested loops of lines 2 and 3, 
where F is the number of frequency steps between fmin and 
funsl.  
4.3. Tier-Two PM 

After classifying tasks into IHS and ILS, and deciding 
about the number of high and low speed cores and their 
corresponding coarse-grain v-f settings in the top-level PM, 
TDU now assign the tasks to individual cores. It also 
determines the target throughput for individual cores in high 
speed and low speed categories.  

4.3.1. Task Assignment 
The task assignment scheme is shown in Figure 4. The 

tasks in the GQ are passed through a switch where ILS and 
IHS tasks are distinguished from each other and will be sent 
to the corresponding Round Robin (RR) switches. Each RR 
switch assigns its input tasks to LQ of an available core using 
the round robin scheduling technique  [11]. At each instance 
of time, both RR switches have a list of the current available 
cores. We define an available core as an active with Queue 
Occupancy (QO) level less than a threshold value. If the next 
core in the list of RR switch is not available, the RR switch 
simply ignores that core and looks for the next available core.  

 
Figure 4. Tier-2 task assignment scheme 

4.3.2. Determining Target Throughput of Cores 
Once tasks are assigned to cores, based on the set of tasks 

that are assigned to each individual core, the mid-level PM 
calculates the target throughput that must be used as the set 
point in the feedback loop controller of the core (tier three 
PM). The target throughput of a core, IPStarget, is equal to the 
sum of the expected number of instructions in the assigned 
tasks divided by the allocation period length. The calculation 
for each core uses a similar equation as equation (9) except 
that the task set is restricted to the tasks assigned to that core, 
and Td is replaced by Ta. That is: 

ܲܫ ௧ܵ௔௥௚௘௧ ൌ
∑ s୨୲ୟୱ୩ ௝ אC

௔ܶ
 (12) 

Note that if the execution time of a task exceeds Ta, it is not 
feasible to execute the complete task in a single allocation 
period, and the corresponding core must continue running 
such task for the next period. However, in order to calculate 
the target throughput value for the core that is running this 
task (with large expected execution time), the task is virtually 
divided into two or more subtasks to be executed in 
subsequent allocation periods. Therefore, only the portion of 
task that is executed during each Ta period is considered in 
the target throughput calculation of the core for that period.  
4.4. Tier-Three PM 

To maintain a target throughput, IPStarget, for each core, we 
use the feedback control theory  [26]. More precisely, we 
model a processor core as a system, called Gs, whose input 
vector is the v-f settings and whose output is the resulting 
throughput of the core, IPS, as shown in Figure 5. The 
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controller, shown by Gc in the figure, assigns a v-f setting for 
the core. The system then employs this v-f setting, and the 
resulting throughput is measured by means of the built-in 
performance monitoring units (a core’s IPS value can be 
measured on the fly by using the retired instruction count 
measured by Hardware Performance Counters  [24] in a time 
interval). If the measured throughput is less than the target 
throughput, the controller will increase the v-f setting value, 
which results in higher throughput. On the other hand, if the 
measured throughput is greater than the target throughput, the 
controller will reduce the v-f setting value to match the 
required throughput. This technique reduces power 
consumption by performing DVFS to deliver only the 
required throughput. 

 
Figure 5. Closed loop system representation. 

 

We can model the throughput of a core, given by (3), as a 
linear function of its frequency, i.e., the input-output 
relationship of the system, Gs, can be represented with a 
linear function. Consequently, we can apply the linear control 
techniques which are simple, effective, and accurate enough 
for our purpose. Recall the controller needs to be embedded 
in the PMU, and hence complex implementations are to be 
avoided. There are many options for the type of linear 
controller here. In this paper, we use a Proportional Integral 
(PI) controller  [26]. A PI controller is a special case of 
Proportional Integral Derivative (PID) controllers that are 
very easy to implement, and usually easy to design for a first-
order system  [2] [8]. The derivative component of the general 
PID controllers may amplify the effect of noise, and thus it is 
not used in this work. To design the PI controller, we follow 
the well established control theory techniques  [26]. 

To use the linear control techniques, we first linearize the 
relationship between throughput of a core and its frequency 
around a frequency f0, by replacing ܥܲܫሺ݂ሻ in (3) with its 
maximum value at f0 as a fixed value (using the maximum 
value is to guarantee stability of the closed loop system): 

ሺ݂ሻܵܲܫ ൌ ሺܥܲܫ ଴݂ሻ · ݂ (13) 
where ܥܲܫሺ ଴݂ሻ is defined by (14), if the set of tasks in the 
local queue have an average expected IPC of ܥܲܫ௔௩௚௡௖௠ and 
average CMF of CMFavg. The value of IPC(f0) is 
approximated at design time for worst case. 

ሺܥܲܫ ଴݂ሻ ൌ max ሺ
௔௩௚௡௖௠ܥܲܫ

1 ൅ ௖ߙ · ௔௩௚௡௖௠ܥܲܫ · ௔௩௚ܨܯܥ · ଴݂
ሻ (14) 

The transfer function of a PI controller in the z-domain is: 
ሻݖ௖ሺܩ ൌ ௣ܭ ൅ ூܭ

ݖ
ݖ െ 1 (15) 

where Kp and KI are coefficients to be determined based on 
the desired characteristics of the closed loop system. Hence 
the transfer function of the closed-loop control system may 
be written as: 

ሻݖሺܩ ൌ
ሻݖ௦ሺܩሻݖ௖ሺܩ

1 ൅ ሻݖ௦ሺܩሻݖ௖ሺܩ
 (16) 

with a corresponding characteristic equation  [26] as follows: 
ଶݖ ൅ ൫ሺܭூ ൅ ௔௩௚ܥܲܫ௉ሻܭ െ 2൯ݖ ൅ 1 െ ௉ܭ · ௔௩௚ܥܲܫ ൌ 0 (17) 
The solutions to the above equation are the closed-loop 

poles of system, whose placement in the z-plane determines 
the main characteristics of the system, such as its steady state 
error, response time, overshoot and stability. To guarantee 
stability of the loop, the poles should be placed inside the 
Unit Circle of z-plane in the Root Locus of system  [26]. For 
our problem, the best placement of poles is found to be at 
0.5±0.1i to generate a relatively fast and low-overshoot step 
response as shown in Figure 6.  

 

 

 
Figure 6. (a) Root Locus and (b) Step Response of the places poles. 

5. EXPERIMENTAL RESULTS 
We have developed a real-time simulator in C++ to 

implement and evaluate the proposed power management 
technique. The simulator uses an N-way CMP with shared L2 
cache. The simulator is an event driven simulator, in which 
the triggering events are task arrival, task departure, decision, 
allocation, and sampling points. It emulates execution of the 
tasks on the cores based on their size, IPCncm and CMF; 
however, PMU decisions are made only by knowing size and 
MAR of tasks, and estimating IPCC,avg’s on-line. The PMU, 
GQ, LQ’s, and TDU are implemented in software. 
Configuration of the cores is as described in Table 1, which is 

Gs

f IPSGc
IPStarget
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based on the configuration of UltraSPARC T2 (Niagra2) 
processor  [27]. The dynamic and idle power consumption of 
CMP are modeled as presented in equation (6) with the 
coefficients matching the target processor’s power 
characteristics. The proposed PM technique shown in Figure 
3 (called 3T-PM) was implemented, as well as another 
baseline PM algorithm. For the purpose of comparison, no 
prior work is found that tackles the same power management 
problem that we have solved. For example, reference  [1] that 
is the closest to our problem, ignores core consolidation and 
also is based on life-time fixed task to core assignment. 
References  [2] [3] are also lacking dynamic task to core 
assignment phase. Therefore, a direct comparison with a 
specific prior work is not possible. However, to evaluate 3T-
PM’s performance, we compare it to a baseline PM which 
can be seen as a modified version of the work presented in 
 [1]. The baseline PM does not support core consolidation; 
neither does it classify the tasks into IHS and ILS. Round 
robin is used for task assignment in the baseline PM. Also, to 
study the efficiency of control-theory feedback loop, the 
baseline PM comes with per-core open loop DVFS 
capability, which indeed is different from non-control-theory 
closed loop DVFS of  [1]. In order to realize DVFS, the 
baseline PM utilizes information about tasks to determine the 
required frequency that satisfies system throughput, and uses 
a higher core frequency value, as a safety margin, to take into 
account the uncertainty of those values. 
5.1. Task Generation 

Tasks are randomly generated and sent to the CMP. The 
expected job size and inter-arrival time of tasks are assumed 
to be two independent random variables with exponential 
distributions with mean values of E(s) and 1/E(λ), 
respectively. Note that in order to avoid overflow, the 
average of task arrival rate is set to less than or equal to the 
maximum processing capacity of CMP. In other words, the 
mean value of task inter-arrival time is greater than or equal 
to the expected execution time (mean of expected job size, 
divided by product of the average IPC of tasks and the 
maximum core frequency) divided by N, total number of 
cores. Each incoming task is assumed to be generated by one 
of the nine applications (benchmarks) given in Table 2. The 
MAR values of tasks are assigned based on MAR of 
SPEC2000 benchmarks  [28]. The detailed micro-architecture 
task characteristics used to emulate task execution in our 
simulator, i.e. IPCncm and CMF are extracted by SimpleScalar 
simulations and shown in Table 2. In order to choose the 
parent application of each incoming task, we use a discrete 
uniform random variable that selects from the nine 
benchmarks given in Table 2 with equal probability, p=1/9. 
This means that the characteristic values for incoming tasks 
are picked from the values given in Table 2 with equal 
probability of p=1/9. In order to model the uncertainty of the 
information about the tasks, we apply a ±20% uniform 
disturbance to the values of task characteristics at runtime, 
before issuing the task to CMP.  

 
 

Table 1. Configurations of the cores in CMP system 

Pipeline stages 8 (int), 12 (fp) 
Execution units 2 INT units, 1 FP unit 
Issue queue size 20 
Load/Store queue 32/32 
L1 instruction/data cache 16KB, 8-way/8KB, 4-way/LRU  
L2 unified cache  N*512KB, 16-way, 64B line 
Technology node/Vdd  65nm, 1.5V 
Frequency {200:200+:1600} MHz 
Typical Dynamic Power 8.9W @ fmax 
Typical Leakage Power 2.9W 

 
 
Table 2. Average characteristics of benchmarks used to generate tasks 

Benchmark MAR IPCncm CMF 
Art 16% 0.816 0.0488 
Bzip 18% 0.902 0.0685 
Equake 7% 1.850 0.0065 
Gcc 14% 0.876 0.0392 
Go 9% 0.773 0.0188 
Gzip 26% 0.869 0.0865 
Mcf 23% 2.221 0.0629 
Mesa 13% 1.923 0.0272 
Twolf 8% 1.205 0.0172 

 
Table 3 summarizes the parameters used in the simulation.  
 

Table 3. Simulation parameters 
Number of Cores N= {4, 8, 16} 
funsl 800MHz 
LQ / GQ  8 / 40,80,160 
Td / Ta / Ts 50 / 10 / 2ms  

MARth %15 

Qd 60% 
E(s) 1 M instructions 
E(λ)  1.0N, 1.9N [1/ms] 

Number of simulated task 5000 

 
5.2. Results  

For the purpose of comparison, we compare the proposed 
3T-PM algorithm to the baseline power management 
algorithm described earlier in this section. It does not support 
core consolidation, task classification, or control-theory 
feedback loop. Figure 7 shows the average power 
consumption of the CMP system under the baseline solution 
and the 3T-PM solution. The experiments were done for three 
different CMP configurations with N=4, N=8, and N=16 
cores, and under two system throughput constraints, low and 
high corresponding to 30% and 80% of the maximum 
processing capacity of CMP, respectively. On average, 3T-
PM consumes 23% less power compared to baseline PM. 
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Figure 7. Power consumption of 3T-PM solution vs. baseline 
PM for three CMP configurations and arrival rates. 

 

Figure 8 depicts waveforms of frequency set by DVFS 
method of 3T-PM and the baseline PM for one core to 
compare the effect of PI controller-based DVFS with the 
open loop DVFS. The throughput constraint for both systems 
is the same and is shown in the figure with blue color, and 
none of the PM techniques violate the throughput constraint. 
It can be seen from the figure that the core frequency level 
used by 3T-PM is (on average) around 7% lower than the 
frequency level used by the baseline technique. Note that in 
this example, 3T-PM is about 17% more power efficient 
compared to the baseline system.  

 

Figure 8. Frequency waveforms used by 3T-PM and baseline PM for 
the same throughput constraint. 

 

In addition to power minimization, our PM performs better 
in terms of performance compared to an improved version of 
the baseline which now employs closed loop DVFS as 
explained in section  4.4. In particular, we considered very 
high task arrival rates that pushed the CMP to its processing 
capacity limit, hence resulting in sizable task drop rate at the 
global queue of the CMP system. Under this scenario, our 
method shows an average of 18% lower task drop rate, with 
7% lower power consumption. Note that the size of GQ was 
set to the same value in both cases. The reason lies in the 
separation of IHS and ILS tasks to run on different cores in 
our method, which prevents unnecessary wait of the IHS 
tasks for the ILS tasks in the GQ.  

 

 
Figure 9. Task loss rate improvement due to the task classification 

step in the 3T-PM solution. 

Figure 9 shows this fact, which can also be interpreted as 
the higher quality of service (QoS) of the 3T-PM solution 
compared to the baseline one with feedback, under very high 
task arrival rate. Finally, in the experiments we performed for 
various core counts (up to 16) and workload configurations, 
the power and performance overheads of 3T-PM are 
negligible. More precisely, the 3T-PM runtime at each tier is 
negligible compared to the epoch length, i.e., it is less than 
1%. Since the algorithm is software based, its power 
consumption overhead is linearly related to the ratio of 
execution time of PMU code to that of the applications; 
hence, the power dissipation overhead of 3T-PM is also 
insignificant, the same as its runtime overhead. 

6. CONCLUSION 
We formulated the problem of minimizing the power 

consumption of a chip multiprocessor system under an 
average throughput constraint. DVFS and core consolidation 
along with task assignment methods are employed as part of 
our solution framework. In particular, we introduced a 
hierarchical global power manager comprised of three tiers 
performing core consolidation and coarse-grain DVFS at top 
tier, assigning the tasks to available cores considering server 
and task affinities at mid-tier, and closed-loop feedback based 
per-core DVFS at the low-tier.  

The proposed PM suffers from a number of limitations 
which can be summarized as follows: (i) it focuses on 
independent tasks and ignores communication between the 
tasks, and also parallel and multi-threaded tasks, which will 
be studied as the future work and (ii) relying on a centralized 
TDU limits the scalability of the proposed 3T-PM to large 
number of cores. The reason of using a centralized dispatch 
mechanism is to have better control on task assignment, while 
a distributed task fetch mechanism would give better 
scalability with cost of less controllability over optimality of 
task assignment. Furthermore it does not consider 
heterogeneous multi-core processors, which is again our 
future work. Comparison of this technique to a baseline one 
showed 23% power saving for our technique, which also 
resulted in some 18% lower task drop rate under stringent 
throughput constraints for the target CMP system. 
Considering the promising simulation results, we would like 
to implement 3T-PM algorithm into the kernel of an open-
source operating system and evaluate its performance and 
power saving in a physical CMP.  

0

20

40

60

80

100

120

140

160

180

low high low high low high

Throughput

Baseline 3T‐PM

16 cores 

8 cores

4 coresPo
w
er
 [W

]

1

2

3

4

5

6

7

8

0

200

400

600

800

1000

1200

1400

1600

1800

2 18 34 50 66 82 98 11
4

13
0

14
6

16
2

17
8

19
4

21
0

22
6

24
2

25
8

27
4

29
0

30
6

32
2

33
8

35
4

37
0

38
6

Th
ro
ug
hp
ut
 [1

00
0M

IP
S]

Fr
eq
ue
nc
y 
[M

H
z]

Time [ms]

f_baseline f_3TPM Throughput

0

0.1

0.2

0.3

0.4

0.5

4 8 16

Proposed Heurisrtic

baseline method

Number of Cores

Ta
sk

dr
op

 r
at
e



 

Ghasemazar, Minimizing Power Consumption of a CMP… 

Finally, a more sophisticated task assignment algorithm, 
based on the Limited Minimum Intervening (LMI) task 
scheduling policy of  [29], can be developed to further 
improve the power efficiency by considering cache affinity to 
reduce CMF. More precisely, we will build a weighted graph 
of tasks and cores, and define task-to-core and inter-task 
affinity factors. Next we will develop an algorithm, based on 
Fiduccia-Mattheyes heuristic solution to the VLSI CAD 
partitioning problem  [30], to optimally assign tasks to cores 
considering the given cache affinity factors.  
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