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Abstract - A compact canonical form and a computational 
procedure for solving the Boolean matching problem 
under permutation and complementation of variables are 
presented. The proposed approach, which utilizes 
generalized signatures and variable symmetries, can 
handle combinational functions with no limitation on the 
number of input variables. Experimental results 
demonstrate the generality and effectiveness of the 
proposed canonical form and the associated Boolean 
matching algorithm. 

I. INTRODUCTION 

BOOLEAN matching is the problem of determining 
whether a given Boolean function is functionally 
equivalent to a target function under input permutation 
and/or complementation of some of its input variables. 
Boolean matching algorithms have many applications in 
verification and logic synthesis. As an example, during the 
cell-library binding process, it is necessary to repeatedly 
determine whether some cluster of a Boolean network can 
be realized by any logic cell in a standard cell library [1].  
Boolean functions that are equivalent under negation 
(permutation) of inputs are said to be N-equivalent (P-
equivalent). Functions that are equivalent under both 
negation and permutation of their inputs are called NP-
equivalent [2]. Equivalence under permutation and 
complementation of inputs as well as complementation of 
the output gives rise to the notion of NPN-equivalent 
Boolean functions. An exhaustive method for solving the 
Boolean matching problem is computationally intractable 
since the complexity of such an algorithm for matching 
two n-variable functions is O(n!2n+1). 
Boolean matching algorithms may be classified into two 
categories: algorithms that utilize pair-wise matching and 
those based on canonical forms of functions. Pair-wise 
Boolean matching algorithms are based on a semi-
exhaustive search where the search space is pruned by 
using appropriate signatures (filters). These filters tend to 
capture intrinsic characteristics of a Boolean function [1] 
and, if at all possible, are independent of the permutation 
or complementation of the function variables. Canonical 
form-based Boolean matching algorithms work by 
computing some complete and unique (canonical) forms 
of the Boolean functions. The idea is that two functions 
match if and only if their canonical forms are the same.  
The power of canonical form-based Boolean matching is 
best manifested in the cell-library binding application. At 
the first stage of the process, i.e., the library preprocessing 
step, canonical forms of the library cell functions are 
computed. For efficient equivalence checking of canonical 

forms, a hash table is utilized to store the canonical forms 
of all library cell functions. This preprocessing is 
performed only once for a given library. During the cell 
binding step, to find a cell that covers a subgraph of the 
subject graph, the canonical form of the cluster function is 
computed. Next, the hash table is checked for the presence 
of the canonical form of the cluster function. A matching 
is found if and only if the canonical form of the cluster 
function is in the table. This method thereby eliminates the 
need for pair wise matching of the cluster against the 
library cells one cell at a time. 
Burch and Long introduced a canonical form for matching 
under input complementation and a semi-canonical form 
for matching under input permutation [3]. In their solution, 
to simultaneously handle complementation and 
permutation of inputs, a large number of forms for each 
cell are required. Other researchers, including Wu et al. 
[4], Debnath and Sasao [5], and Ciric and Sechen [6] have 
proposed canonical forms that are applicable to Boolean 
matching under permutation of the variables only. 
Hinsberger and Kolla [7] and Debnath and Sasao [8] have 
introduced a canonical form for solving the general 
Boolean matching problem. However, their approach is 
mainly based on manipulation of the truth table of the 
function and by employing a table look-up, which results 
in an enormous space complexity, thus restricting their 
algorithm to library cells with seven or fewer input 
variables. Mohnke and Malik [9] introduced an approach 
which computes a signature for each variable or phase of a 
variable, which is subsequently helpful in establishing the 
correspondence of variables or phases of variables. 
However, according to their reported results, their 
approach fails to conclude a unique correspondence of 
variables or phases of variables for some of the benchmark 
circuits. Chai and Kuehlmann [10] presented a matcher by 
integrating a number of different techniques from previous 
works and adding new heuristics.  The authors of [10] 
however, do not provide results for circuits with larger 
number of inputs due to the space complexity of their 
method. 
The present paper introduces a new canonical form for 
representing Boolean functions. The proposed canonical 
form of a Boolean function is the unique Boolean function 
that is obtained after applying some canonicity-producing 
(CP) transformation on its input and output variables. The 
proposed transformation is based on utilizing generalized 
signatures (signatures of one or more input variables) to 
find a phase assignment and total ordering for the input 
variables. In this paper we extend our preliminary work in 
[21]. Some of the key differences and extensions are as 
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follows. In [21] we only handled input phase assignments 
and permutation while in this extended version, we handle 
output phase assignments as well. We have significantly 
changed the presentation and notation throughout the 
paper and provided more details about the proofs of 
lemmas and theorems. We have added an entire section on 
symmetries and on the importance of symmetries in the 
Boolean matching problem. Finally we have explained 
how to detect symmetries by our proposed algorithm. 
In the remainder of this paper, a combination of phase 
assignment and ordering for input variables is referred to 
as a transformation on variables. For most Boolean 
functions, single- and two-variable signatures are 
sufficient to recognize all variables (i.e., produce a CP 
transformation.) However, use of single-variable and two-
variable signatures alone may not in general result in a 
canonical input transformation.  
The canonical form is defined based on a property that 
makes it unique among all functions in an NPN-
equivalence class. The key task is to devise a canonical 
form that handles permutation and complementation of 
inputs and output with a low (average) time complexity. 
This is achieved by using the concept of a signature vector 
with two important properties: (i) the signature vector of a 
function is unique, (ii) the signature vector may be used to 
define a total ordering on Boolean functions. We will 
show that the canonical form (NPN-representative) of an 
NPN-equivalence class is the function that is the greatest 
in the class according to this ordering.  
A number of pervious researchers have used the notion of 
signatures to address the Boolean matching problem. For 
example in [11] the authors have introduced the notion of 
a “universal” signature, which is defined in terms of a 
single variable of a Boolean function. Unfortunately, for 
many functions, such signatures fail to generate a 
canonical form. As an example, consider f(x1,x2,x3,x4) = 
x1x2+x2x3+x3x4+x4x1, the universal signatures of x1, x2, x3, x4 
are identical; hence it is impossible to derive a canonical 
form for this function by using its universal signatures. In 
contrast, in this paper we introduce a signature vector 
which is defined for a function with respect to all 
groupings of its variables.  
Other researchers [12][13] have used the Walsh spectrum 
for defining the canonical form. These methods require the 
computation of the entire Walsh spectrum (which is an 
integer vector of size 2n for an n-input function) and 
processing this vector. In contrast, in the proposed method, 
often only a small portion of the complete signature vector 
is computed. As stated earlier, the 0th, 1st, and 2nd order 
signatures are sufficient in most cases. Another advantage 
of our proposed method is its efficient handling and 
employment of symmetry relations. More precisely, our 
method takes advantage of variable symmetry and 
signatures of variables (mostly 1st and 2nd order signatures) 
to efficiently (on average only) compute the canonical 
form of a Boolean function under the NPN equivalence 
relation. This efficient computation is made possible 
because of a number of important properties of the 
proposed canonical form. In fact the proposed canonical 
form is defined so that it possesses properties, which can 

be exploited for efficient computation of the canonical 
form.  
A. Overview of the proposed algorithm 
The process of computing the canonical form, F, for a 
given function, f, is regarded as applying a transformation 
– i.e., a complementation of some inputs of f (input phase 
assignment), a permutation on its inputs (input 
permutation), and a complementation of output of f (output 
phase assignment) – that converts f to its canonical form F. 
Before we define the signatures of a Boolean function, we 
can describe some important properties of the canonical 
form, F, with respect to its 0th and 1st signatures. These 
properties are as follows. (i) The 0th signature of the 
canonical form, F, of any given function, f, is greater than 
or equal to that of the complement of F. This property is 
used for computing the output phase assignment; (ii) The 
1st signature of the canonical form, F, with respect to any 
of its variables, is greater than or equal to that of the 
complement of that variable. This property is used for 
computing the input phase assignment; (iii) The 1st 
signatures of the canonical form, F, with respect to input 
variables are sorted non-decreasingly (the input variables 
of a function are assumed to be indexed.) This property is 
used for computing the proper permutation on inputs; and 
(iv) Symmetric variables of the canonical form, F, appear 
consecutively in the inputs of function F. Since swapping 
symmetric variables does not change the functionality, the 
search space for input permutations is significantly 
reduced due to this property.  
If these steps do not result in a unique transformation (i.e., 
there is a tie among the 1st signatures), the 2nd and (when 
necessary) higher order signatures will be used to break 
the ties. There may be more than one transformation that 
converts a function to its canonical form. This situation 
occurs because of the existence of symmetries.  
The proposed algorithm for computing the canonical form 
returns all transformations that convert a function into its 
canonical form. One can use the relationships among these 
canonicity-producing transformations to construct all 
possible functional symmetry relations for the given 
function. A key advantage of the proposed technique is the 
way it handles and uses the symmetry of variables to 
minimize the complexity of the Boolean matching 
algorithm compared to some of the previous approaches, 
which are not able to consider symmetries [7][8].  
In section II, first terminology and some key definitions 
are provided followed by a description of symmetry 
relations and signatures used in the paper. In section III, 
the canonical form is defined and the algorithm for 
computing the canonical form is described. Experimental 
results and conclusions are given in sections IV and V.  

II. PRELIMINARIES 
Let X = (x1, x2,…, xn) denote a vector  of Boolean variables 
and f(X) a single-output completely-specified Boolean 
function of X. A literal is a variable, x, or its 
complement x . We denote literals by simple letters such as 
y, which does not necessarily mean that the phase of literal 
is positive. A cube is the Boolean conjunction of literals. A 
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minterm is a cube with n literals. | f | denotes the number 
of minterms covered by f. 
Definition 1: An NP transformation T on a vector X is 
defined as a phase assignment followed by a permutation. 
The inverse of T, is a transformation T-1 such that applying 
T and T-1

 successively to X results in X. 
Γn denotes the set of NP transformations on a vector of 
size n. 
An example of an NP transformation on ),,( 321 xxx  is 

),,( 132 xxx . In the remainder of this paper we denote a 
transformation T and the result of applying T to vector X = 
(x1, x2, …, xn) by TX. 
The cofactor of f with respect to a literal y, denoted by fy, 
is the function obtained by setting y to 1 in f. The cofactor 
of f with respect to a cube c, denoted by fc, is the function 
obtained by setting all literals of the cube to 1. 
Definition 2: Two functions f(X) and g(X) are NPN-
equivalent (f ≡ g), if there exists an NP transformation T so 
that f(X) equals g(TX) or its complement. 
Example 1: Let 321 xxxf +=  and )( 213 xxxg += . It is 

easy to see that )()( TXgXf =  (or )(TXg ) where 

3 2 1( , , )T x x x= . Thus, f(X) and g(X) are NPN-equivalent. 
NPN-equivalence is an equivalence relation, which 
partitions the set of all single output Boolean functions 
into equivalence classes. Boolean matching is often 
defined in terms of P, NP or NPN-equivalence. In 
principle, NPN-equivalence can be reduced to 2n+1n! 
tautology checks. 

A. Symmetry relations 
Functional symmetries provide significant benefits for 
multiple tasks in synthesis and verification [14]-[20]. As 
will be explained below, concepts of Boolean matching 
and symmetry are closely related. In the proposed Boolean 
matching algorithm, this relationship manifests itself in 
two ways. First, simple types of symmetries (that are 
inexpensive to discover) are utilized to reduce the 
complexity of the Boolean matching algorithm. Second, 
the proposed Boolean matching algorithm will generate 
(as a bi-product) the remaining (more complicated) 
symmetries.  
Symmetries provide insights into the structure of the 
Boolean function, which can subsequently be used to 
facilitate operations on it. Symmetries may also serve as a 
guide for preserving that structure when the function is 
transformed in some way. In the context of the Boolean 
matching problem, symmetries that we explore are 
variable permutations, with possible complementations, 
that leave the function unchanged or simply invert the 
function. In the presence of functional symmetries, several 
design problems (e.g., circuit restructuring, checking 
satisfiability, and computing sequential reachability) are 
considerably simplified. Hence, interest in functional 
symmetries started in the early days of logic design [14] 
and has continued until now [15]-[20]. In [16], functional 
symmetry is exploited to optimize a circuit 
implementation for low power consumption and delay 
under an area increase constraint. Another benefit of 

knowledge about functional symmetries is that it can help 
produce better variable orders for Binary Decision 
Diagrams (BDDs) and related data structures (e.g., 
Algebraic Decision Diagrams). The size of the BDD of a 
Boolean function can be significantly reduced if 
symmetric variables are placed in adjacent positions [17]. 
This plays a crucial role in BDD-based symbolic model 
checking.  
In the physical design domain, functional symmetries are 
used to improve rewiring, re-buffering, and post-
placement optimization [18] [19]. The authors of [22] and 
[23] utilize automorphisms for symmetry identification. 
We consider symmetries in the most general from, i.e., 
considering input permutation, input phase assignment, 
and output phase assignment which has not been studied 
thoroughly enough by other researchers in the past. 
Definition 3: A function f is symmetric with respect to an 
NP transformation T  if f(X) equals ( )f TX  or ( )f TX . 
We refer to such a transformation (T) as a symmetry-
producing (SP) transformation. 
We denote the set of all SP transformations by Sf, which 
creates a sub-group of Γn. As mentioned earlier, some 
types of symmetry are easily detectable and are discovered 
before the Boolean matching algorithm. We start by 
discussing simple symmetries. 
Definition 4 (Simple Symmetry): Two literals x and y are 
said to be symmetric in f, denoted as x ≡ y, if f is invariant 
under an exchange of x and y. 
Example 2: Given ))(()( 4321 xxxxXf ++= , we have 

21 xx ≡  and 43 xx ≡ . 
It is well known, and can be readily shown by using the 
Boole’s expansion theorem [5], that condition x ≡ y is 
equivalent to yxyx ff ≡ . The variable symmetry relation is 

an equivalence relation. Hence, it is possible to partition 
variables x1, x2, …, xn into equivalence classes, which we 
will refer to as symmetry classes C1, C2, …, Cm. The 
phases of variables in classes are chosen so that if two 
literals x and y belong to the same class, then  x ≡ y. 
Example 3: For function ))(()( 4321 xxxxXf ++= , there 

exist two symmetry classes: },{ 211 xxC =  and 

},{ 432 xxC = . 
There are a number of algorithms in the literature for 
generating symmetry classes e.g., [20]. 
So far we have discussed simple symmetries which 
correspond to NP transformations that involve only two 
variables. In the sequel we present a key theorem, which 
provides a valuable insight for handling and enumerating 
symmetries. We investigate the effect of the SP 
transformation T on simple symmetry classes.  
Theorem 1: Let function f be symmetric with respect to 
SP transformation T and Ck be a symmetry class of 
variables of f. Then, mapping literals of Ck under T gives 
rise to a symmetry class. 
Proof: The composition of SP transformations is an SP 
transformation. Lets T1 denote swapping of two literals x 
and y. Let x’ and y’ denote mappings of x and y under T. 
The reader can verify that TT1T-1 denotes swapping of x’ 
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and y’ and since TT1T-1 is an SP transformation x’ and y’ 
are symmetric. The theorem follows from this fact.■ 
The theorem states that any SP transformation maps 
symmetry classes to other symmetry classes. This result, 
which may be considered as a constraint for any SP 
transformation, is especially important in the process of 
identifying SP transformations because it limits the space 
of transformations that must be explored. More precisely, 
to explore possible SP transformations, it is sufficient to 
explore only NP transformations that are specified in terms 
of higher order symmetry classes instead of the individual 
variables. Since the class count is usually considerably 
smaller than the variable count, this theorem tends to 
greatly reduce the search space. 

B. Signatures 
Conventionally, a signature represents a (quantitative) 
characteristic of a Boolean function with respect to one or 
more of its variables. For example, the onset size signature 
provides the number of minterms in the onset of a Boolean 
function. In the context of Boolean matching, signatures 
are frequently used as necessary conditions for the 
matching of two logic functions. For example, two 
functions that do not have the same onset size signatures 
are clearly different functions. However, even when they 
have the same signatures, they can be different. A 
signature that depends on only one input variable is called 
a first order signature (or 1st-signature). The 1st-signatures 
have been traditionally defined with respect to variables. 
However, since we intend to consider phase assignment in 
addition to permutation of variables, we define the 1st-
signatures with respect to literals. 
A well-known 1st-signature for a literal x of a Boolean 
function f is the “minterm” count of the ONSET of the 
cofactor of this function with respect to x i.e., | fx |. In pair-
wise matching methods (for checking P-equivalence), a 
1st-signature must be able to recognize an input variable xi 
independent of any input variable permutation so that it 
can establish a correspondence between variable xi of f 
with a variable yj of some other Boolean function g. It 
makes sense to try to establish a correspondence between 
these two variables only if they have the same 1st-
signatures. 
The main idea of the pair-wise matching approach is now 
evident: if we are able to compute a unique signature for 
each input variable of f, then the variable mapping 
problem will be solved because there will be either exactly 
one or possibly no variable correspondence for the P-
equivalence of function f with respect to some other 
function g. More precisely, if, for each variable of f, we 
find a variable of g that has the same unique signature, 
then we will establish a one-to-one correspondence 
between variables of f and g. Otherwise, we will know that 
these two functions are not P-equivalent. The main 
difficulty that arises in this paradigm is when more than 
one variables of function f have the same 1st-signature. In 
such a case, it is not possible to distinguish between these 
variables, i.e., there is no unique correspondence that can 
be established with the inputs of some other function. We 
will thus generalize the concept of 1st signatures to higher 

order signatures and define a signature vector that has the 
full expressive power to handle the Boolean matching 
problem. The expressive power of the signature vector is 
not the only motivation for this approach. Another 
incentive is that the canonical form defined by using the 
proposed signature vector possesses a number of 
properties, which significantly reduce the computational 
complexity of obtaining the canonical form.  
Definition 5: The kth order signature of function f with 
respect to literals l1, l2, …, lk is the minterm count of 
cofactor of f with respect to cube c= l1l2…lk, i.e., | fc |. The 
0th order signature is | f |.  
Definition 6: For a function f with n variables in its input 
support set, the signature vector denoted by Vf includes the 
0th-signature followed by the 1st-, 2nd- and higher order 
signatures up to the nth-signature. 

st nd
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Next we present an important theorem, which proves that 
the signature vector of a function is unique i.e., different 
Boolean functions have different signature vectors. 
Theorem 2: For a function f, signature vector Vf uniquely 
and completely specifies function f. 
Proof: The value of function Vf for all minterms can be 
obtained from signatures in Vf. Some of the computations 
are as follows:  

||)1,...,1,1( ...21 nxxxff =  

||||||)1,...,1,0( ......... 21221 nnn xxxxxxxx ffff −==  

|||||| ......... 32332 nnn xxxxxxxx fff −=  

||||||)1,...,1,0,0( ......... 3213221 nnn xxxxxxxxxx ffff −==  

||||||||)1,...,1,0,0( ............ 32131323 nnnn xxxxxxxxxxxx fffff +−−=  

Other minterms are similarly obtained. ■ 

III. THE SIGNATURE-BASED CANONICAL FORM 
Let’s consider an NPN-equivalence class, EC={f1,f2,…,fm}, 
of n-input Boolean function. Any two functions in EC are 
NPN-equivalent and any function that is NPN-equivalent 
to some function in EC is also in EC. The Boolean 
matching problem under NPN-equivalence is reduced to 
that of verifying whether two target Boolean functions, f 
and g, belong to the same NPN-equivalence class.  
Let’s denote the canonical form of a function f by F 
(capital letters are used for canonical forms e.g., the 
canonical form of a function fi is denoted by Fi.) In the 
canonical form based Boolean matching, a unique 
representative, called the NPN-representative of the class, 
is selected for every class as formalized in the next 
definition. 
Definition 7: The canonical form of functions f1, f2,…, fm 
in an NPN-equivalence class EC is defined as the NPN-
representative, F, of EC. Clearly, F ≡ F1 = F2 = ...= Fm. 
The NPN-representative F is selected based on some 
criteria that make F unique in EC. One way is to define a 
total ordering for functions in EC and select the maximum 
or the minimum (with respect to the defined order) as the 
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NPN-representative (canonical form) of the class. 
Fact: Two functions f and g are NPN-equivalent if and 
only if they have the same canonical form.  
The NPN-equivalence class that includes a function f, 
denoted by Ef, is the set of all functions that are NPN-
equivalent to f. Hence, Ef may be created by applying the 
set of all NP transformations and output phase assignments 
to f one at a time. 
Definition 8: Given function f, an NP transformation T 
such that F(X) is equal to f(TX) or its complement is called 
a canonicity-producing (CP) transformation.  
We present an algorithm to compute the canonical form of 
a given NPN-equivalence class as well as the set of all CP 
transformations Cf. We will show that the set of symmetry-
producing (SP) transformations Sf can be easily obtained 
from Cf. The importance of identifying all NP 
transformations in Sf was explained earlier. For a set S of 
NP transformations and a given transformation T, we 
define ST, i.e., the right coset of S determined by T, as the 
composition of all transformations in S with T. 
Lemma 1: For a function f, let T and T’ be two CP 
transformations. Then T’T-1 and is an SP transformation. 
Proof:  Clearly, F(X) is equal to f(TX) or its complement 
and also to f(T’X) or its complement, which means that 
f(X) is equal to f(T’T-1X) or its complement.  ■ 
Theorem 3: For a function f and any CP transformation T, 
Cf is the right coset of Sf determined by T. 
Proof: It follows directly from Lemma 1. ■ 
The set of SP transformations, Sf, includes transformations 
that correspond to simple symmetries. In the algorithm 
that we will present next to identify CP transformations, 
Cf, simple symmetries are first identified because their 
computational complexity is lower than that of computing 
the general symmetries. This information is subsequently 
used to compute Cf. Finally, based on Cf, the remaining SP 
transformations of Sf are computed. 

A. Proposed canonical form and its properties 
As mentioned earlier, among functions of an NPN-
equivalence class, the NPN-representative is selected 
based on a criterion that makes the representative unique 
among all functions in the class. We defined the signature 
vector for a function and proved that it is unique for every 
function. We define a total ordering for functions based on 
a lexicographical comparison of their signature vectors. 
Definition 9: Let ‘<’ denote the lexicographic comparison 
of vectors. Consider two functions f and g with signature 
vectors Vf and Vg, respectively. The order relation ‘<’ 
between f and g is defined as: f < g if and only if Vf < Vg.  
Using this order relation, the NPN-representative 
(canonical form) is defined as follows. 
Definition 10 (NPN-representative) Consider an NPN-
equivalent class of functions EC = {f1,f2,…,fm} defined on 
variable set y1, y2, …, yn. Let S be a subset of EC where 
every function fi(y1, y2, …, yn)  in S satisfies the following 
condition: 
(i) if yi ≡ yj for some i < j, then yi ≡ yi+1≡ ... ≡ yj. 
We define the representative of EC (called the NPN-
representative) as a function F in S such that: 
  (ii) for all functions fi in S,  fi < F. 

 
Condition (i) ensures that for the canonical form F of a 
class EC, symmetric variables are positioned 
consecutively in (y1,y2,…,yn), i.e., variables will be 
arranged as: 
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where C1,C2,…,Ck  are symmetry classes and ni=|Ci|. 
Condition (ii) guarantees that the canonical form F is 
maximal according to the relation ‘<’ among all functions 
that satisfy (i). 
In this section we detail some important properties of the 
proposed canonical form, which may be used to compute 
the canonical form. We will use the vector Y=(y1,y2,…,yn) 
to represent the inputs of the canonical form F. This 
notation helps the reader better understand the process. 
Theorem 4: Let F(Y) be the canonical form of an NPN-
equivalence class EC and 

iyF denote the cofactor of F with 

respect to yi. We have: 
(i) FF  >  (Corollary: |||| FF ≥ .) 
(ii) 

ii yy FF  >  (Corollary: | | | |
i iy yF F≥ .) 

(iii) If yi ≡ yj then ||||
ji yy FF = ; Otherwise,  

for i<j,  ||||
ji yy FF ≥  and if  ||||

ji yy FF =  then 

1 1 1 1 1

1 1 1 1 1

(| |, ,| |,| |, ,| |,| |, ,| |) 

(| |, ,| |,| |, ,| |,| |, ,| |) 
i i i i i i j i j i n

j j i j i j j j j j n

y y y y y y y y y y y y

y y y y y y y y y y y y

F F F F F F

F F F F F F
− + − +

− + − +
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Proof: (i) It follows from the definition of the canonical 
form (condition (ii) of definition 10.) (ii) The proof is by 
contradiction. Assuming that 

ii yy FF  >  is not correct for 

some i, then negating yi and other variables in the 
symmetry class of yi will transform F to another function 
F’ with a greater signature vector than F resulting in F’<F 
to be false, which is a contradiction. (iii) The proof is by 
contradiction. Assuming that assertion (iii) is false, 
swapping yi with yj (along with other variables in 
symmetry classes of yi with yj to meet condition (i) of 
definition 10) will transform F to another function F’ that 
satisfies condition (i) of definition 10 and F’>F  i.e., 
contradicts condition (ii) of definition 10. ■ 
Part (iii) implies that the 1st-signatures are sorted non-
increasingly, i.e.: 

1 11 1 1 1 2
| | | | | | | | | | | |

n n n n n n nky y y y y yF F F F F F
+ − ++

= = > = = > > = =L L L L

 
B. Computing the canonical form 

Given a function f, the goal is to find its canonical form F 
and the corresponding set of CP transformations, Cf. 
Theorem 4 imposes conditions on the canonical form F. 
Our approach is to project conditions on F into conditions 
on CP transformation, T. This greatly reduces the search 
space. 
The proposed algorithm, called compute_Cf, uses 
signatures of function f to compute the CP transformations 
on inputs and the corresponding output phase assignments. 
In most cases, the 0th and 1st-signatures determine the 
inequalities required to identify the desired NP 
transformation. If unsuccessful, the remaining 
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comparisons are performed by using the 2nd-signatures 
and/or higher order signatures. 
Experimental results indicate that in the great majority of 
cases, a signature inequality occurs for the low order 
signatures (0th, 1st and 2nd signatures.)  Intuitively, the 
reason is that the lower order signatures depend on a 
higher number of minterms of the function, and thus, 
contain more information about the function, e.g., a 1st-
signature depends on 2n-1 minterms, which is half of the 
whole Boolean space with 2n minterms, whereas a 2nd-
signature depends on 2n-2 minterms. Hence, the 1st-
signatures are the most powerful signatures. The 2nd-
signatures are the next most useful signatures, and so on. 
This arrangement of the proposed signature vector 
minimizes the computational complexity.  
The first step of the compute_Cf algorithm is to identify 
the output phase assignment. If |||| ff ≠ , the output 
phase can be uniquely determined (i.e., the phase that 
results in the larger value is chosen.) However, if 

|||| ff = , the output phase is undecided, and will be 
determined in subsequent steps of the algorithm. For now, 
we assume that the output phase is decided (the other case 
will be discussed afterwards) and, for simplicity, use f to 
denote the output function after phase assignment. 

 
In the next step, input phase assignment is performed by 
using the 1st-signatures. For variable xi, if ||||

ii xx ff >  (or 

||||
ii xx ff < ), then a positive (or negative) phase is 

selected for xi. However, if ||||
ii xx ff = ,  then the phase of 

xi remains undecided. Undecided input phases will be 
determined in subsequent steps of the algorithm. Let’s 
rename the variables such that yi denotes variables after 
phase assignment. Note that if the phase of some variable 
xi is undecided, we define yi=xi but record that the input 
phase is undecided. We sort signatures ||

iyf  in a non-

increasing order and re-index yi’s so 
that:

1 2
| | | | | |

ny y yf f f≥ ≥ ≥L .  

In the next step, symmetry classes of variables are 

determined. A necessary condition for two variables yi and 
yj to be symmetric is that they have the same 1st-signatures. 
If phases of variables yi and yj are undecided, we will 
determine yi and yj to be symmetric only if they are 
symmetric independent of their phases. An example of this 
situation occurs when f depends on yi⊕yj, i.e.,  f = 
g((yi⊕yj),y1,…,yi-1,yi+1,…,yj-1,yj+1,…,yn). Based on these 
symmetry relations, we form the symmetry classes of 
variables C1,C2,…,Cm. Function f will remain invariant 
under permutations inside a symmetry class. Based on this 
fact and since symmetric variables are positioned 
consecutively in the inputs of function F, instead of 
finding NP transformations on variables, it is sufficient to 
search for NP transformations on classes C1,C2,…,Cm, 
which greatly reduces the size of search space. This 
method returns CP transformations modulo simple 
symmetries, i.e., when a number of CP transformations are 
related to each other by a simple symmetry relation 
(variable swapping), then any one of these transformations 
will be returned. Next we discuss the concept of NP 
transformations on classes.  
Phases of classes that contain variables with decided 
phases are positive. The phase assignment for classes that 
contain variables with undecided phases can be toggled by 
toggling the phases of all variables in the class. An NP 
transformation on classes C1,C2,…,Cm signifies a 
transformation on variables x1,x2,…,xn. The cofactor of 
function f with respect to any member of class Ci is a 
unique function; hence, the cofactor of f with respect to 
class Ci can be defined as fx for any x∈Ci. Similarly, the 
1st-signature of f with respect to class Ci may be defined as 
|fx| . In the next step, classes are ordered based on their 1st-
signatures. Let’s re-index the classes so 
that: ||||||

21 mCCC fff ≥≥≥ L . If these 1st-signatures are 

distinct, then a unique ordering will be achieved, in which 
case the algorithm terminates, returning a CP 
transformation that results from reordering and phase 
assignment. Otherwise, the classes are placed in k groups 
such that all classes inside a group have the same 1st-
signature: 

 
4484476

LL
4484476

L
48476

L

k

k

G

mnn

G

nnn

G

n CCCCCC ,,,,,,,,, 111

2

211

1

1 +−++
. 

We refer to a group as unresolved if the group contains 
more than one class or phases of classes in the group are 
undecided. If all groups are resolved, a unique ordering 
will be obtained and the algorithm will terminate. The goal 
thus is to resolve all unresolved groups. Let 
Gj={Cj,Cj+1,…,Cl} be the first unresolved group. Since all 
groups G1,G2,…,Gj-1 have been resolved, (i.e., they contain 
a single class with a decided phase), the ordering of 
classes up to Gj-1 is known. (The case when G1 is 
unresolved is discussed at the end of next paragraph.) Now 
the 2nd-signatures are used to specify the ordering inside 
the unresolved groups starting with Gj. Since G1 is 
resolved, G1={C1}, the 2nd-signatures with respect to C1 
and Ci for j ≤ i ≤ l  can be used for phase assignment (if 
needed) and ordering of classes Cj,Cj+1,…,Cl (this step is 
referred to as iteration 1.)  
If phases of classes Ci in Gj are undecided, the 2nd-

Algorithm compute_Cf (f(X)) 
Input: A Boolean function f(X) 
Output: The canonical form f(X) and CP 
transformations Cf. 
using the 0th‐signature perform output phase 
assignment; 
using the 1st‐signatures 

if  ||||
ii xx ff >  assign positive phase to xi; 

else if  ||||
ii xx ff < assign negative phase to xi; 

else mark the phase of xi as undecided. 
create symmetry classes and order the classes such 
that:  ||||||

21 mCCC fff ≥≥≥ L  

group classes to groups G1,G2,…,Gk such that all 
classes inside a group have the same 1st‐signature: 
recursive_resolve(G1,G2,…,Gk;Cf) ; 
set the canonical form: F(X)=f(TX) where T∈Cf; 
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signatures ||
1 iCCf  and ||

1 iCCf are compared to decide the 

phase for Ci. In case of equality of the 2nd-signatures, the 
phase of Ci remains undecided. Next, new values of 2nd-
signatures ||

1 iCCf  after phase assignment are used to order 

classes Cj,Cj+1,…,Cl and later regroup these classes. 
Subsequently, Gj is split into smaller groups such that 
inside each group the 2nd-signatures are equal. The same 
procedure (phase assignment, ordering and regrouping 
based on 2nd-signatures) is applied to all other unresolved 
groups. Finally, the indices of new groups are properly 
updated. If after these steps, there still exists some 
unresolved group, Gl, a similar procedure will be applied 
based on the 2nd-signatures with respect to C2 and Ci∈Gl 
(this is named iteration 2.) If needed, iterations 

1,,4,3 −jK  will be performed. If, at iteration j, there 
still exists some unresolved groups and Gj itself is also 
unresolved, the procedure described below will be used. 
This case includes the case where G1 is unresolved.  
At this point, groups G1,G2,…,Gj-1 are resolved. However, 
group Gj={Cj,Cj+1,…,Cl} are not resolved (since the 1st and 
2nd signature have not made them distinct.) There are l–j+1 
ways (for j≤i≤l) to split Gj into two groups: new Gj={Ci} 
and new Gj+1= {Cj,…,Ci–1,Ci+1,…,Cl}. If the phase of Ci is 
undecided, then there will be two ways to resolve the new 
group, Gj. Consequently, there are r=l–j+1 ways (or in the 
worst case r=2(l–j+1) ways) to specify and resolve the 
new group, Gj. All these r cases need to be tracked, since it 
is unknown which one(s) will result in a CP 
transformation. For each case, the 2nd-signatures, ||

ijCCf , 

are used to first order classes inside the unresolved groups 
among Gj+1,Gj+2,…,Gm and then split them based on the 
outcome of ordering. This process continues for all r cases 
recursively (cf. the recursive_resolve algorithm) until all 
groups are resolved. Each case corresponds to a different 
input phase assignment and re-indexing. Any input phase 
assignment and re-indexing transforms X=(x1,x2,…,xn) to 
Y=(y1,y2,…,yn) where F(Y) = f(X). Each such relation can 
be described by an NP transformation T where X = TY. 
The r cases result in transformations T1,T2,…,Ts where in 
general s≥r because each case returns more than one 
transformation as a result of the recursion process. 
Because of the way the CP transformations are 
constructed, they will be among {T1,T2,…,Ts} (modulo 
simple symmetries). Hence, by using the 1st and 2nd 
signatures, we have limited the search for a CP 
transformation among all 2nn! transformations of  Γn to 
that of searching among {T1,T2,…,Ts}, which is a 
significantly smaller space than Γn.  
CP transformations among {T1,T2,…,Ts} are identified 
based on the fact that Ti is a CP transformation if and only 
if f(TiX) ≥ f(TjX) for 1≤j≤s. This task requires repeated 
comparison between f(TiX) and f(TjX). The comparison is 
done based on the signature vectors. However, before 
using the signature vectors, the possibility of equivalency 
of Ti and Tj should be considered, i.e., first the relation 
f(TiX) = f(TjX) should be checked since in case of equality 
their signature vectors will also be equal. Because of the 
manner by which the NP transformations T1,T2,…,Ts are 

obtained, they all have the same set of 0th and 1st 
signatures. In fact, some of their 2nd signatures are also 
equal. Hence, to avoid redundancy in comparing f(TiX) and 
f(TjX), only signatures that have not already been 
determined to be equal are generated and compared. Since 
comparison is done based on lexicographic comparison of 
signature vectors, signatures are generated one by one 
based on their effectiveness. Only in case of equality, 
subsequent signatures are generated and compared. 
Experience shows that for nearly all functions, the 1st and 
2nd signatures conclude the comparison of  f(TiX) < f(TjX).  

 
In this description of the algorithm, we did not discuss the 
case where the output phase may not be decided by the 0th-
signature. In such a case, the following steps will have to 
be performed for both output phases. Let’s assume that Cf 
is the set of NP transformations returned by the algorithm 
for f and C’f is returned for f . If )'()( XTfTXf >  (where  
T∈Cf and T’∈C’f), then the output phase is positive; if  

)'()( XTfTXf < , then the output phase is negative; and in 
case equality, both phases can result in the canonical form, 
i.e., )'()()( XTfTXfXF ==  and the set of CP 
transformations is set to Cf ∪C’f. 
The algorithm returns Cf which in general may contain 
more than one NP transformations. Based on the members 

Algorithm recursive_resolve (G1,G2,…,Gk;Cf) 
Input: Ordered groups (G1,G2,…,Gk) 
Output: The CP transformations Cf 
i=1; Cf ={};  
while (i≤m) { // m is the number of classes 
     if (Gi is resolved) { // Gi ={Ci} 
          for (all unresolved groups Gj){   
              use signatures  ||

liCCf  (Cl∈Gj) to assign phase, 

                   order and split Gj; 
             update indices of groups and classes;  
         } 
         i=i+1; 
     } else { // Gi={Ci,Ci+1,…,Cl} is not resolved 
          // for space limitation assume the phase of 
          // Gi={Ci,Ci+1,…,Cl}is decided 
          for (j=i; j≤l; j++) {  
              split Gi to groups {Cj} and  {Ci,…,Cj–1,Cj+1,…,Cl}; 
              update indices of groups and classes  
                  (G1,G2,…,Gk,Gk+1);                                                                 
               recursive_resolve (G1,G2,…,Gk,Gk+1;CfTEMP) ; 
               if (Cf={} or f(TTEMPX)>f(TX)){ 
                    //T∈Cf, TTEMP∈CfTEMP  
           Cf=CfTEMP; 
              } else if (f(TTEMPX)=f(TX)) { 
            Cf=Cf ∪CfTEMP; 
              } 
         } 
         return; 
      } 
} //At this point there are m resolved groups 
T = Transformation obtained by phase assignment and   
       ordering; 
Cf={T}; 
return;  
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of Cf, SP transformations (other than those corresponding 
to simple symmetries) are detected, i.e., if T and T’ are CP 
transformations, then T’T–1 will be an SP transformation. 
Equivalently, for CP transformation T, CfT–1⊂Sf. Other 
members of Sf may be generated by composing NP 
transformation of CfT–1 with simple symmetry 
transformations. Composition means construction of every 
transformation that can be generated by members of T–1Cf 
and symmetry transformations. This step may require 
repeated compositions. 
Example 4: Consider the multiplexer function 

465365265165)( xxxxxxxxxxxxXf +++= . The 0th signature 
of the function and its complement are equal, i.e., 

32|||| == ff ; hence, in this step the output phase cannot 
be determined. We must consider both phases. First we 
choose the positive phase. In this function, there is no 
symmetry between variables, i.e., each symmetry class 
contains only one variable. After doing input phase 
assignment, ordering and grouping classes (in this case, 
variables), two groups G1 and G2 are 
created: },,,{ 43211 xxxxG =  and 

},{ 652 xxG =  where 

40||||||||
4321
==== xxxx ffff  and 32||||

65
== xx ff . 

For members in G2, the phase is undecided since 
32||||||||

6655
==== xxxx ffff  whereas for G1 the phase is 

decided where the 1st-signature is: 40|| =
ixf . Both groups 

G1 and G2 are unresolved. Group G1 can be split in four 
ways:  
1: },,{},{ 4321 xxxx   2: },,{},{ 4312 xxxx    

3: },,{},{ 4213 xxxx  4: },,{},{ 3214 xxxx   
The algorithm keeps track of all these cases. Let’s focus 
on one of the cases e.g., case 1 which results in the 
following grouping: 

},{},,,{},{ 65243211 xxGxxxGx == . Now 
we try to resolve G1 and G2. Since 

48||||||
413121

=== xxxxxx fff , G1 cannot be 

resolved at this step. As for G2, 
48||32||

5151
=<= xxxx ff   and  

48||32||
6161
=<= xxxx ff  which implies that negative 

phases should be assigned to x5 and x6. However, 
||||

6151 xxxx ff =  which means that G2 can not be 

resolved further, i.e., the overall grouping thus far is: 
},{},,,{},{ 65243211 xxGxxxGx == .  

There are three ways to resolve G1. Following one of these 
cases, for example, will result in 

6543121 ,},,{,, xxxxGxx =  since 

48||||
4232
== xxxx ff  and 

32||48||
6252
=>= xxxx ff  which results in 

),,,,,( 65432112 xxxxxxY =  because 

32||||
5453
== xxxx ff  and 32||48||

6463
=>= xxxx ff . The 

resulting Y12 corresponds to a transformations T12 where X 

= T12Y12. Indices 1 and 2 in T12 indicate the decisions that 
have been made for splitting G1 to obtain this 
transformation T12. Had we chosen x3 instead of x2, we 
would have arrived at ),,,,,( 56423113 xxxxxxY =  
(and T13 from X = T13Y13). However, choosing x4 (instead 
of x2) does not immediately resolve G1 and a further step 
to decide between x2 and x3 must be performed, resulting 
in ),,,,,( 653241142 xxxxxxY =  and 

),,,,,( 562341143 xxxxxxY =  and subsequently T142 and T143. 
It turns out that f(T142X) = f(T143X), which means that we 
must keep both T142 and T143 transformations at this step. 
However,  f(T12X) = f(T13X) ≠ f(T142X) which means that 
we should either keep T142 and T143 or keep T12 and T13. To 
make this decision signature vectors of f(T12X) and f(T142X) 
need to be compared. All their 0th and 1st signatures and 
most (but not all) of their 2nd signatures are equal. Hence, 
to decide between T12 and T142 we first compare the 
remaining 2nd signatures of f(T12X) and f(T142X). Since 

32||48||
6452
=>= xxxx ff  is the first inequality that 

breaks the tie, f(T12X)>f(T142X) which shows that only T12 
and T13 should be kept. These transformations are the 
result of selecting x1 to spilt G1 at the beginning. If we 
choose x2, x3 or x4 we will obtain transformations T21, T24, 
T31, T34, T42 and T43. It turns out that f(T12X)=  f(T13X) = 
f(T21X) = f(T24X) = f(T31X) = f(T34X) = f(T42X) = f(T43X), 
which means that all these 8 transformations are maximal.  
We obtained these transformations by assuming positive 
phase for the output. If we choose the negative phase and 
follow the same steps, we will obtain 8 other 
transformations. It turns out that these new transformations 
along with output negation convert f to the same function 
as previous transformations i.e., there are 16 CP 
transformations and the canonical form 
is 465365265165)( xxxxxxxxxxxxXF +++= . These 16 CP 
transformations result in 16 SP transformations. 

IV. EXPERIMENTAL RESULTS   
The technique presented above was implemented and ran 
on a computer system with a 1.7GHz Intel Xeon processor 
and 1GB of memory. To evaluate the effectiveness of the 
proposed algorithm, canonical forms are computed for all 
cells in a large cell library, containing a large number of 
complex cells with up to 20 inputs. We started with a 
standard cell library and augmented it with a large number 
of pseudo-randomly generated logic cells with different 
input counts. These pseudo-random functions were 
generated from different single output clusters taken from 
the subject graphs created for MCNC benchmark circuits.  
Table 1 shows the worst-case and average run-times 
required for computing the canonical form in terms of the 
number of inputs; i.e., the second and third columns are 
the worst-case and average runtimes for all n-input cells. 
The fourth and fifth columns present results (after scaling 
to match CPU speeds) provided in references [8] and [10].  
The run-times in this table are in microseconds and 
include data for cells with more than 3 inputs.  As an 
example, the worst-case 20-input cell was a multiplexer 
with four select inputs for which the proposed algorithm 
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took 240 microseconds to compute its canonical form. Our 
results show a major improvement in run-time over [8]. 
Our runtimes are similar to those of [10] for circuits of 
nine or fewer inputs. Reference [10] performs better on 
some small benchmarks. Note however that the authors of 
[10] do not provide results for circuits with larger number 
of inputs due to the space complexity of their method. 
(This limitation is because of using hash table to store pre-
computed results). 
For nearly all of the cells in the library, the canonical 
forms were computed by using only the 0th, 1st and 2nd-
signatures. The number of 0th, 1st and 2nd-signatures 
combined is (1+n)(1+n/2). Only one of the cells required 
the use of a single 3rd-signature. In spite of this, clearly for 
some Boolean functions, it may become necessary to 
generate all of the high order signatures. In this worst-case 
scenario, the number of generated signatures will be the 
power set of n which is exponential in n. However, the 
algorithm described above is complete and capable of 
handling functions that may require the use of higher order 
signatures for computing the canonical form. The function 
that required the use of the 3rd signatures was a multiplexer 
where one of the select inputs was the output of an XOR 
function. A simplified version of such a function is 

421321 )()()( xxxxxxXF ⊕+⊕= .  
One of the advantages of the proposed algorithm is 
identifying all symmetry relations for the given function.  
The runtime of the algorithm for any function has a direct 
relation with the number of non-simple symmetry relations 
of the function. More precisely, the higher the number of 
non-simple SP transformations, the higher the runtime. 
Table 1. Runtimes for computing canonical forms and 

number of non-simple SP transformations. 
Number of 
Inputs 

Average 
run‐time 

Worst‐case 
run‐time 

Ref  [8] 
(scaled) 

Ref [10]
(Scaled)

Size of  
Sf 

3  < 1  < 1  4.62  ‐  4 
4  < 1  < 1  7.41  0.2  6 
5  1  1  26.02  0.63  8 
6  2  3  39.13  1.09  16 

7  3  5  147.6  1.74  18 

8  4  8  –  3.57  24 

9  6  14  –  7.05  32 

10  8  21  –  –  64 

11  14  30  –  –  128 

12  20  48  –  –  144 

13  23  61  –  –  162 

14  33  80  –  –  216 

15  37  105  –  –  288 

16  44  115  –  –  324 

17  56  140  –  –  384 

18  67  165  –  –  512 

19  80  200  –  –  576 

20  100  240  –  –  768 
The sixth column of Table 1 reports the number of non-
simple SP transformations for functions that correspond to 
the worst-case runtimes in the previous experiment. Note 
that the number of non-simple SP transformations is equal 

to the number of non-trivial CP transformations i.e., |Cf |. 
Despite major advances in the algorithms for Boolean 
matching (including this work) the time and space 
complexities of all these algorithms remain exponential in 
the worst case. In our approach the space complexity is 
determined by the size of the BDD used to represent the 
function (which is in the worst case exponential in the 
number of inputs of the Boolean function.) The worst-case 
time complexity is exponential in the number of inputs 
since we may have to generate all signatures of a Boolean 
function ranging from the 0th to the nth order. However, 
judging by the experimental results, since the BDD sizes 
remain reasonable and since we have never encountered a 
case that required more than a 3rd order signature, the time 
complexity remains polynomial for the attempted 
benchmarks and many randomly generated circuits. 

V. CONCLUSION 
This paper addressed the general Boolean matching 
problem in which both permutation and complementation 
of inputs and output are considered. A new efficient and 
compact canonical form was defined and an effective 
algorithm for computing the proposed canonical form was 
presented. The compactness and average efficiency of the 
accompanying computational procedures enables this 
algorithm to be applicable to a wide range of circuits 
without large number of inputs. Experimental results 
demonstrated the efficacy of the proposed approach. 
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