
1 | P a g e

Abstract - A compact canonical form and a computational
procedure for solving the Boolean matching problem
under permutation and complementation of variables are
presented. The proposed approach, which utilizes
generalized signatures and variable symmetries, can
handle combinational functions with no limitation on the
number of input variables. Experimental results
demonstrate the generality and effectiveness of the
proposed canonical form and the associated Boolean
matching algorithm.

I. INTRODUCTION

BOOLEAN matching is the problem of determining
whether a given Boolean function is functionally
equivalent to a target function under input permutation
and/or complementation of some of its input variables.
Boolean matching algorithms have many applications in
verification and logic synthesis. As an example, during the
cell-library binding process, it is necessary to repeatedly
determine whether some cluster of a Boolean network can
be realized by any logic cell in a standard cell library [1].
Boolean functions that are equivalent under negation
(permutation) of inputs are said to be N-equivalent (P-
equivalent). Functions that are equivalent under both
negation and permutation of their inputs are called NP-
equivalent [2]. Equivalence under permutation and
complementation of inputs as well as complementation of
the output gives rise to the notion of NPN-equivalent
Boolean functions. An exhaustive method for solving the
Boolean matching problem is computationally intractable
since the complexity of such an algorithm for matching
two n-variable functions is O(n!2n+1).
Boolean matching algorithms may be classified into two
categories: algorithms that utilize pair-wise matching and
those based on canonical forms of functions. Pair-wise
Boolean matching algorithms are based on a semi-
exhaustive search where the search space is pruned by
using appropriate signatures (filters). These filters tend to
capture intrinsic characteristics of a Boolean function [1]
and, if at all possible, are independent of the permutation
or complementation of the function variables. Canonical
form-based Boolean matching algorithms work by
computing some complete and unique (canonical) forms
of the Boolean functions. The idea is that two functions
match if and only if their canonical forms are the same.
The power of canonical form-based Boolean matching is
best manifested in the cell-library binding application. At
the first stage of the process, i.e., the library preprocessing
step, canonical forms of the library cell functions are
computed. For efficient equivalence checking of canonical

forms, a hash table is utilized to store the canonical forms
of all library cell functions. This preprocessing is
performed only once for a given library. During the cell
binding step, to find a cell that covers a subgraph of the
subject graph, the canonical form of the cluster function is
computed. Next, the hash table is checked for the presence
of the canonical form of the cluster function. A matching
is found if and only if the canonical form of the cluster
function is in the table. This method thereby eliminates the
need for pair wise matching of the cluster against the
library cells one cell at a time.
Burch and Long introduced a canonical form for matching
under input complementation and a semi-canonical form
for matching under input permutation [3]. In their solution,
to simultaneously handle complementation and
permutation of inputs, a large number of forms for each
cell are required. Other researchers, including Wu et al.
[4], Debnath and Sasao [5], and Ciric and Sechen [6] have
proposed canonical forms that are applicable to Boolean
matching under permutation of the variables only.
Hinsberger and Kolla [7] and Debnath and Sasao [8] have
introduced a canonical form for solving the general
Boolean matching problem. However, their approach is
mainly based on manipulation of the truth table of the
function and by employing a table look-up, which results
in an enormous space complexity, thus restricting their
algorithm to library cells with seven or fewer input
variables. Mohnke and Malik [9] introduced an approach
which computes a signature for each variable or phase of a
variable, which is subsequently helpful in establishing the
correspondence of variables or phases of variables.
However, according to their reported results, their
approach fails to conclude a unique correspondence of
variables or phases of variables for some of the benchmark
circuits. Chai and Kuehlmann [10] presented a matcher by
integrating a number of different techniques from previous
works and adding new heuristics. The authors of [10]
however, do not provide results for circuits with larger
number of inputs due to the space complexity of their
method.
The present paper introduces a new canonical form for
representing Boolean functions. The proposed canonical
form of a Boolean function is the unique Boolean function
that is obtained after applying some canonicity-producing
(CP) transformation on its input and output variables. The
proposed transformation is based on utilizing generalized
signatures (signatures of one or more input variables) to
find a phase assignment and total ordering for the input
variables. In this paper we extend our preliminary work in
[21]. Some of the key differences and extensions are as

Symmetry Detection and Boolean Matching Utilizing a
Signature-Based Canonical Form of Boolean Functions

Afshin Abdollahi, member and Massoud Pedram, Fellow

2 | P a g e

follows. In [21] we only handled input phase assignments
and permutation while in this extended version, we handle
output phase assignments as well. We have significantly
changed the presentation and notation throughout the
paper and provided more details about the proofs of
lemmas and theorems. We have added an entire section on
symmetries and on the importance of symmetries in the
Boolean matching problem. Finally we have explained
how to detect symmetries by our proposed algorithm.
In the remainder of this paper, a combination of phase
assignment and ordering for input variables is referred to
as a transformation on variables. For most Boolean
functions, single- and two-variable signatures are
sufficient to recognize all variables (i.e., produce a CP
transformation.) However, use of single-variable and two-
variable signatures alone may not in general result in a
canonical input transformation.
The canonical form is defined based on a property that
makes it unique among all functions in an NPN-
equivalence class. The key task is to devise a canonical
form that handles permutation and complementation of
inputs and output with a low (average) time complexity.
This is achieved by using the concept of a signature vector
with two important properties: (i) the signature vector of a
function is unique, (ii) the signature vector may be used to
define a total ordering on Boolean functions. We will
show that the canonical form (NPN-representative) of an
NPN-equivalence class is the function that is the greatest
in the class according to this ordering.
A number of pervious researchers have used the notion of
signatures to address the Boolean matching problem. For
example in [11] the authors have introduced the notion of
a “universal” signature, which is defined in terms of a
single variable of a Boolean function. Unfortunately, for
many functions, such signatures fail to generate a
canonical form. As an example, consider f(x1,x2,x3,x4) =
x1x2+x2x3+x3x4+x4x1, the universal signatures of x1, x2, x3, x4
are identical; hence it is impossible to derive a canonical
form for this function by using its universal signatures. In
contrast, in this paper we introduce a signature vector
which is defined for a function with respect to all
groupings of its variables.
Other researchers [12][13] have used the Walsh spectrum
for defining the canonical form. These methods require the
computation of the entire Walsh spectrum (which is an
integer vector of size 2n for an n-input function) and
processing this vector. In contrast, in the proposed method,
often only a small portion of the complete signature vector
is computed. As stated earlier, the 0th, 1st, and 2nd order
signatures are sufficient in most cases. Another advantage
of our proposed method is its efficient handling and
employment of symmetry relations. More precisely, our
method takes advantage of variable symmetry and
signatures of variables (mostly 1st and 2nd order signatures)
to efficiently (on average only) compute the canonical
form of a Boolean function under the NPN equivalence
relation. This efficient computation is made possible
because of a number of important properties of the
proposed canonical form. In fact the proposed canonical
form is defined so that it possesses properties, which can

be exploited for efficient computation of the canonical
form.
A. Overview of the proposed algorithm
The process of computing the canonical form, F, for a
given function, f, is regarded as applying a transformation
– i.e., a complementation of some inputs of f (input phase
assignment), a permutation on its inputs (input
permutation), and a complementation of output of f (output
phase assignment) – that converts f to its canonical form F.
Before we define the signatures of a Boolean function, we
can describe some important properties of the canonical
form, F, with respect to its 0th and 1st signatures. These
properties are as follows. (i) The 0th signature of the
canonical form, F, of any given function, f, is greater than
or equal to that of the complement of F. This property is
used for computing the output phase assignment; (ii) The
1st signature of the canonical form, F, with respect to any
of its variables, is greater than or equal to that of the
complement of that variable. This property is used for
computing the input phase assignment; (iii) The 1st
signatures of the canonical form, F, with respect to input
variables are sorted non-decreasingly (the input variables
of a function are assumed to be indexed.) This property is
used for computing the proper permutation on inputs; and
(iv) Symmetric variables of the canonical form, F, appear
consecutively in the inputs of function F. Since swapping
symmetric variables does not change the functionality, the
search space for input permutations is significantly
reduced due to this property.
If these steps do not result in a unique transformation (i.e.,
there is a tie among the 1st signatures), the 2nd and (when
necessary) higher order signatures will be used to break
the ties. There may be more than one transformation that
converts a function to its canonical form. This situation
occurs because of the existence of symmetries.
The proposed algorithm for computing the canonical form
returns all transformations that convert a function into its
canonical form. One can use the relationships among these
canonicity-producing transformations to construct all
possible functional symmetry relations for the given
function. A key advantage of the proposed technique is the
way it handles and uses the symmetry of variables to
minimize the complexity of the Boolean matching
algorithm compared to some of the previous approaches,
which are not able to consider symmetries [7][8].
In section II, first terminology and some key definitions
are provided followed by a description of symmetry
relations and signatures used in the paper. In section III,
the canonical form is defined and the algorithm for
computing the canonical form is described. Experimental
results and conclusions are given in sections IV and V.

II. PRELIMINARIES
Let X = (x1, x2,…, xn) denote a vector of Boolean variables
and f(X) a single-output completely-specified Boolean
function of X. A literal is a variable, x, or its
complement x . We denote literals by simple letters such as
y, which does not necessarily mean that the phase of literal
is positive. A cube is the Boolean conjunction of literals. A

3 | P a g e

minterm is a cube with n literals. | f | denotes the number
of minterms covered by f.
Definition 1: An NP transformation T on a vector X is
defined as a phase assignment followed by a permutation.
The inverse of T, is a transformation T-1 such that applying
T and T-1

 successively to X results in X.
Γn denotes the set of NP transformations on a vector of
size n.
An example of an NP transformation on),,(321 xxx is

),,(132 xxx . In the remainder of this paper we denote a
transformation T and the result of applying T to vector X =
(x1, x2, …, xn) by TX.
The cofactor of f with respect to a literal y, denoted by fy,
is the function obtained by setting y to 1 in f. The cofactor
of f with respect to a cube c, denoted by fc, is the function
obtained by setting all literals of the cube to 1.
Definition 2: Two functions f(X) and g(X) are NPN-
equivalent (f ≡ g), if there exists an NP transformation T so
that f(X) equals g(TX) or its complement.
Example 1: Let 321 xxxf += and)(213 xxxg += . It is

easy to see that)()(TXgXf = (or)(TXg) where

3 2 1(, ,)T x x x= . Thus, f(X) and g(X) are NPN-equivalent.
NPN-equivalence is an equivalence relation, which
partitions the set of all single output Boolean functions
into equivalence classes. Boolean matching is often
defined in terms of P, NP or NPN-equivalence. In
principle, NPN-equivalence can be reduced to 2n+1n!
tautology checks.

A. Symmetry relations
Functional symmetries provide significant benefits for
multiple tasks in synthesis and verification [14]-[20]. As
will be explained below, concepts of Boolean matching
and symmetry are closely related. In the proposed Boolean
matching algorithm, this relationship manifests itself in
two ways. First, simple types of symmetries (that are
inexpensive to discover) are utilized to reduce the
complexity of the Boolean matching algorithm. Second,
the proposed Boolean matching algorithm will generate
(as a bi-product) the remaining (more complicated)
symmetries.
Symmetries provide insights into the structure of the
Boolean function, which can subsequently be used to
facilitate operations on it. Symmetries may also serve as a
guide for preserving that structure when the function is
transformed in some way. In the context of the Boolean
matching problem, symmetries that we explore are
variable permutations, with possible complementations,
that leave the function unchanged or simply invert the
function. In the presence of functional symmetries, several
design problems (e.g., circuit restructuring, checking
satisfiability, and computing sequential reachability) are
considerably simplified. Hence, interest in functional
symmetries started in the early days of logic design [14]
and has continued until now [15]-[20]. In [16], functional
symmetry is exploited to optimize a circuit
implementation for low power consumption and delay
under an area increase constraint. Another benefit of

knowledge about functional symmetries is that it can help
produce better variable orders for Binary Decision
Diagrams (BDDs) and related data structures (e.g.,
Algebraic Decision Diagrams). The size of the BDD of a
Boolean function can be significantly reduced if
symmetric variables are placed in adjacent positions [17].
This plays a crucial role in BDD-based symbolic model
checking.
In the physical design domain, functional symmetries are
used to improve rewiring, re-buffering, and post-
placement optimization [18] [19]. The authors of [22] and
[23] utilize automorphisms for symmetry identification.
We consider symmetries in the most general from, i.e.,
considering input permutation, input phase assignment,
and output phase assignment which has not been studied
thoroughly enough by other researchers in the past.
Definition 3: A function f is symmetric with respect to an
NP transformation T if f(X) equals ()f TX or ()f TX .
We refer to such a transformation (T) as a symmetry-
producing (SP) transformation.
We denote the set of all SP transformations by Sf, which
creates a sub-group of Γn. As mentioned earlier, some
types of symmetry are easily detectable and are discovered
before the Boolean matching algorithm. We start by
discussing simple symmetries.
Definition 4 (Simple Symmetry): Two literals x and y are
said to be symmetric in f, denoted as x ≡ y, if f is invariant
under an exchange of x and y.
Example 2: Given))(()(4321 xxxxXf ++= , we have

21 xx ≡ and 43 xx ≡ .
It is well known, and can be readily shown by using the
Boole’s expansion theorem [5], that condition x ≡ y is
equivalent to yxyx ff ≡ . The variable symmetry relation is

an equivalence relation. Hence, it is possible to partition
variables x1, x2, …, xn into equivalence classes, which we
will refer to as symmetry classes C1, C2, …, Cm. The
phases of variables in classes are chosen so that if two
literals x and y belong to the same class, then x ≡ y.
Example 3: For function))(()(4321 xxxxXf ++= , there

exist two symmetry classes: },{ 211 xxC = and

},{ 432 xxC = .
There are a number of algorithms in the literature for
generating symmetry classes e.g., [20].
So far we have discussed simple symmetries which
correspond to NP transformations that involve only two
variables. In the sequel we present a key theorem, which
provides a valuable insight for handling and enumerating
symmetries. We investigate the effect of the SP
transformation T on simple symmetry classes.
Theorem 1: Let function f be symmetric with respect to
SP transformation T and Ck be a symmetry class of
variables of f. Then, mapping literals of Ck under T gives
rise to a symmetry class.
Proof: The composition of SP transformations is an SP
transformation. Lets T1 denote swapping of two literals x
and y. Let x’ and y’ denote mappings of x and y under T.
The reader can verify that TT1T-1 denotes swapping of x’

4 | P a g e

and y’ and since TT1T-1 is an SP transformation x’ and y’
are symmetric. The theorem follows from this fact.■
The theorem states that any SP transformation maps
symmetry classes to other symmetry classes. This result,
which may be considered as a constraint for any SP
transformation, is especially important in the process of
identifying SP transformations because it limits the space
of transformations that must be explored. More precisely,
to explore possible SP transformations, it is sufficient to
explore only NP transformations that are specified in terms
of higher order symmetry classes instead of the individual
variables. Since the class count is usually considerably
smaller than the variable count, this theorem tends to
greatly reduce the search space.

B. Signatures
Conventionally, a signature represents a (quantitative)
characteristic of a Boolean function with respect to one or
more of its variables. For example, the onset size signature
provides the number of minterms in the onset of a Boolean
function. In the context of Boolean matching, signatures
are frequently used as necessary conditions for the
matching of two logic functions. For example, two
functions that do not have the same onset size signatures
are clearly different functions. However, even when they
have the same signatures, they can be different. A
signature that depends on only one input variable is called
a first order signature (or 1st-signature). The 1st-signatures
have been traditionally defined with respect to variables.
However, since we intend to consider phase assignment in
addition to permutation of variables, we define the 1st-
signatures with respect to literals.
A well-known 1st-signature for a literal x of a Boolean
function f is the “minterm” count of the ONSET of the
cofactor of this function with respect to x i.e., | fx |. In pair-
wise matching methods (for checking P-equivalence), a
1st-signature must be able to recognize an input variable xi
independent of any input variable permutation so that it
can establish a correspondence between variable xi of f
with a variable yj of some other Boolean function g. It
makes sense to try to establish a correspondence between
these two variables only if they have the same 1st-
signatures.
The main idea of the pair-wise matching approach is now
evident: if we are able to compute a unique signature for
each input variable of f, then the variable mapping
problem will be solved because there will be either exactly
one or possibly no variable correspondence for the P-
equivalence of function f with respect to some other
function g. More precisely, if, for each variable of f, we
find a variable of g that has the same unique signature,
then we will establish a one-to-one correspondence
between variables of f and g. Otherwise, we will know that
these two functions are not P-equivalent. The main
difficulty that arises in this paradigm is when more than
one variables of function f have the same 1st-signature. In
such a case, it is not possible to distinguish between these
variables, i.e., there is no unique correspondence that can
be established with the inputs of some other function. We
will thus generalize the concept of 1st signatures to higher

order signatures and define a signature vector that has the
full expressive power to handle the Boolean matching
problem. The expressive power of the signature vector is
not the only motivation for this approach. Another
incentive is that the canonical form defined by using the
proposed signature vector possesses a number of
properties, which significantly reduce the computational
complexity of obtaining the canonical form.
Definition 5: The kth order signature of function f with
respect to literals l1, l2, …, lk is the minterm count of
cofactor of f with respect to cube c= l1l2…lk, i.e., | fc |. The
0th order signature is | f |.
Definition 6: For a function f with n variables in its input
support set, the signature vector denoted by Vf includes the
0th-signature followed by the 1st-, 2nd- and higher order
signatures up to the nth-signature.

st nd

1 2 1 2 1 3 1

st th

1 1 2 1

1 signatures 2 signatures

(1) signatures n signature

...

| |,| |,| |,...,| |,| |,| |,...,| |, ...,

| |,...,| |, | |

(

)

n n n

n n n

f
x x x x x x x x x

n

x x x x x x

V f f f f f f f

f f f

−

−

− −

− − −

=
644474448 64444744448

644474448 678

Next we present an important theorem, which proves that
the signature vector of a function is unique i.e., different
Boolean functions have different signature vectors.
Theorem 2: For a function f, signature vector Vf uniquely
and completely specifies function f.
Proof: The value of function Vf for all minterms can be
obtained from signatures in Vf. Some of the computations
are as follows:

||)1,...,1,1(...21 nxxxff =

||||||)1,...,1,0(......... 21221 nnn xxxxxxxx ffff −==

|||||| 32332 nnn xxxxxxxx fff −=

||||||)1,...,1,0,0(......... 3213221 nnn xxxxxxxxxx ffff −==

||||||||)1,...,1,0,0(............ 32131323 nnnn xxxxxxxxxxxx fffff +−−=

Other minterms are similarly obtained. ■

III. THE SIGNATURE-BASED CANONICAL FORM
Let’s consider an NPN-equivalence class, EC={f1,f2,…,fm},
of n-input Boolean function. Any two functions in EC are
NPN-equivalent and any function that is NPN-equivalent
to some function in EC is also in EC. The Boolean
matching problem under NPN-equivalence is reduced to
that of verifying whether two target Boolean functions, f
and g, belong to the same NPN-equivalence class.
Let’s denote the canonical form of a function f by F
(capital letters are used for canonical forms e.g., the
canonical form of a function fi is denoted by Fi.) In the
canonical form based Boolean matching, a unique
representative, called the NPN-representative of the class,
is selected for every class as formalized in the next
definition.
Definition 7: The canonical form of functions f1, f2,…, fm
in an NPN-equivalence class EC is defined as the NPN-
representative, F, of EC. Clearly, F ≡ F1 = F2 = ...= Fm.
The NPN-representative F is selected based on some
criteria that make F unique in EC. One way is to define a
total ordering for functions in EC and select the maximum
or the minimum (with respect to the defined order) as the

5 | P a g e

NPN-representative (canonical form) of the class.
Fact: Two functions f and g are NPN-equivalent if and
only if they have the same canonical form.
The NPN-equivalence class that includes a function f,
denoted by Ef, is the set of all functions that are NPN-
equivalent to f. Hence, Ef may be created by applying the
set of all NP transformations and output phase assignments
to f one at a time.
Definition 8: Given function f, an NP transformation T
such that F(X) is equal to f(TX) or its complement is called
a canonicity-producing (CP) transformation.
We present an algorithm to compute the canonical form of
a given NPN-equivalence class as well as the set of all CP
transformations Cf. We will show that the set of symmetry-
producing (SP) transformations Sf can be easily obtained
from Cf. The importance of identifying all NP
transformations in Sf was explained earlier. For a set S of
NP transformations and a given transformation T, we
define ST, i.e., the right coset of S determined by T, as the
composition of all transformations in S with T.
Lemma 1: For a function f, let T and T’ be two CP
transformations. Then T’T-1 and is an SP transformation.
Proof: Clearly, F(X) is equal to f(TX) or its complement
and also to f(T’X) or its complement, which means that
f(X) is equal to f(T’T-1X) or its complement. ■
Theorem 3: For a function f and any CP transformation T,
Cf is the right coset of Sf determined by T.
Proof: It follows directly from Lemma 1. ■
The set of SP transformations, Sf, includes transformations
that correspond to simple symmetries. In the algorithm
that we will present next to identify CP transformations,
Cf, simple symmetries are first identified because their
computational complexity is lower than that of computing
the general symmetries. This information is subsequently
used to compute Cf. Finally, based on Cf, the remaining SP
transformations of Sf are computed.

A. Proposed canonical form and its properties
As mentioned earlier, among functions of an NPN-
equivalence class, the NPN-representative is selected
based on a criterion that makes the representative unique
among all functions in the class. We defined the signature
vector for a function and proved that it is unique for every
function. We define a total ordering for functions based on
a lexicographical comparison of their signature vectors.
Definition 9: Let ‘<’ denote the lexicographic comparison
of vectors. Consider two functions f and g with signature
vectors Vf and Vg, respectively. The order relation ‘<’
between f and g is defined as: f < g if and only if Vf < Vg.
Using this order relation, the NPN-representative
(canonical form) is defined as follows.
Definition 10 (NPN-representative) Consider an NPN-
equivalent class of functions EC = {f1,f2,…,fm} defined on
variable set y1, y2, …, yn. Let S be a subset of EC where
every function fi(y1, y2, …, yn) in S satisfies the following
condition:
(i) if yi ≡ yj for some i < j, then yi ≡ yi+1≡ ... ≡ yj.
We define the representative of EC (called the NPN-
representative) as a function F in S such that:
 (ii) for all functions fi in S, fi < F.

Condition (i) ensures that for the canonical form F of a
class EC, symmetric variables are positioned
consecutively in (y1,y2,…,yn), i.e., variables will be
arranged as:

444 8444 76
LL

444 8444 76
L

4484476
L

k

kk

C

nnnnn

C

nnnn

C

n yyyyyyyyy ,,,,,,,,,,,, 212121

2

2111

1

1 +−+−+++

where C1,C2,…,Ck are symmetry classes and ni=|Ci|.
Condition (ii) guarantees that the canonical form F is
maximal according to the relation ‘<’ among all functions
that satisfy (i).
In this section we detail some important properties of the
proposed canonical form, which may be used to compute
the canonical form. We will use the vector Y=(y1,y2,…,yn)
to represent the inputs of the canonical form F. This
notation helps the reader better understand the process.
Theorem 4: Let F(Y) be the canonical form of an NPN-
equivalence class EC and

iyF denote the cofactor of F with

respect to yi. We have:
(i) FF > (Corollary: |||| FF ≥ .)
(ii)

ii yy FF > (Corollary: | | | |
i iy yF F≥ .)

(iii) If yi ≡ yj then ||||
ji yy FF = ; Otherwise,

for i<j, ||||
ji yy FF ≥ and if ||||

ji yy FF = then

1 1 1 1 1

1 1 1 1 1

(| |, ,| |,| |, ,| |,| |, ,| |)

(| |, ,| |,| |, ,| |,| |, ,| |)
i i i i i i j i j i n

j j i j i j j j j j n

y y y y y y y y y y y y

y y y y y y y y y y y y

F F F F F F

F F F F F F
− + − +

− + − +

≥K K K

K K K

Proof: (i) It follows from the definition of the canonical
form (condition (ii) of definition 10.) (ii) The proof is by
contradiction. Assuming that

ii yy FF > is not correct for

some i, then negating yi and other variables in the
symmetry class of yi will transform F to another function
F’ with a greater signature vector than F resulting in F’<F
to be false, which is a contradiction. (iii) The proof is by
contradiction. Assuming that assertion (iii) is false,
swapping yi with yj (along with other variables in
symmetry classes of yi with yj to meet condition (i) of
definition 10) will transform F to another function F’ that
satisfies condition (i) of definition 10 and F’>F i.e.,
contradicts condition (ii) of definition 10. ■
Part (iii) implies that the 1st-signatures are sorted non-
increasingly, i.e.:

1 11 1 1 1 2
| | | | | | | | | | | |

n n n n n n nky y y y y yF F F F F F
+ − ++

= = > = = > > = =L L L L

B. Computing the canonical form

Given a function f, the goal is to find its canonical form F
and the corresponding set of CP transformations, Cf.
Theorem 4 imposes conditions on the canonical form F.
Our approach is to project conditions on F into conditions
on CP transformation, T. This greatly reduces the search
space.
The proposed algorithm, called compute_Cf, uses
signatures of function f to compute the CP transformations
on inputs and the corresponding output phase assignments.
In most cases, the 0th and 1st-signatures determine the
inequalities required to identify the desired NP
transformation. If unsuccessful, the remaining

6 | P a g e

comparisons are performed by using the 2nd-signatures
and/or higher order signatures.
Experimental results indicate that in the great majority of
cases, a signature inequality occurs for the low order
signatures (0th, 1st and 2nd signatures.) Intuitively, the
reason is that the lower order signatures depend on a
higher number of minterms of the function, and thus,
contain more information about the function, e.g., a 1st-
signature depends on 2n-1 minterms, which is half of the
whole Boolean space with 2n minterms, whereas a 2nd-
signature depends on 2n-2 minterms. Hence, the 1st-
signatures are the most powerful signatures. The 2nd-
signatures are the next most useful signatures, and so on.
This arrangement of the proposed signature vector
minimizes the computational complexity.
The first step of the compute_Cf algorithm is to identify
the output phase assignment. If |||| ff ≠ , the output
phase can be uniquely determined (i.e., the phase that
results in the larger value is chosen.) However, if

|||| ff = , the output phase is undecided, and will be
determined in subsequent steps of the algorithm. For now,
we assume that the output phase is decided (the other case
will be discussed afterwards) and, for simplicity, use f to
denote the output function after phase assignment.

In the next step, input phase assignment is performed by
using the 1st-signatures. For variable xi, if ||||

ii xx ff > (or

||||
ii xx ff <), then a positive (or negative) phase is

selected for xi. However, if ||||
ii xx ff = , then the phase of

xi remains undecided. Undecided input phases will be
determined in subsequent steps of the algorithm. Let’s
rename the variables such that yi denotes variables after
phase assignment. Note that if the phase of some variable
xi is undecided, we define yi=xi but record that the input
phase is undecided. We sort signatures ||

iyf in a non-

increasing order and re-index yi’s so
that:

1 2
| | | | | |

ny y yf f f≥ ≥ ≥L .

In the next step, symmetry classes of variables are

determined. A necessary condition for two variables yi and
yj to be symmetric is that they have the same 1st-signatures.
If phases of variables yi and yj are undecided, we will
determine yi and yj to be symmetric only if they are
symmetric independent of their phases. An example of this
situation occurs when f depends on yi⊕yj, i.e., f =
g((yi⊕yj),y1,…,yi-1,yi+1,…,yj-1,yj+1,…,yn). Based on these
symmetry relations, we form the symmetry classes of
variables C1,C2,…,Cm. Function f will remain invariant
under permutations inside a symmetry class. Based on this
fact and since symmetric variables are positioned
consecutively in the inputs of function F, instead of
finding NP transformations on variables, it is sufficient to
search for NP transformations on classes C1,C2,…,Cm,
which greatly reduces the size of search space. This
method returns CP transformations modulo simple
symmetries, i.e., when a number of CP transformations are
related to each other by a simple symmetry relation
(variable swapping), then any one of these transformations
will be returned. Next we discuss the concept of NP
transformations on classes.
Phases of classes that contain variables with decided
phases are positive. The phase assignment for classes that
contain variables with undecided phases can be toggled by
toggling the phases of all variables in the class. An NP
transformation on classes C1,C2,…,Cm signifies a
transformation on variables x1,x2,…,xn. The cofactor of
function f with respect to any member of class Ci is a
unique function; hence, the cofactor of f with respect to
class Ci can be defined as fx for any x∈Ci. Similarly, the
1st-signature of f with respect to class Ci may be defined as
|fx| . In the next step, classes are ordered based on their 1st-
signatures. Let’s re-index the classes so
that: ||||||

21 mCCC fff ≥≥≥ L . If these 1st-signatures are

distinct, then a unique ordering will be achieved, in which
case the algorithm terminates, returning a CP
transformation that results from reordering and phase
assignment. Otherwise, the classes are placed in k groups
such that all classes inside a group have the same 1st-
signature:

4484476

LL
4484476

L
48476

L

k

k

G

mnn

G

nnn

G

n CCCCCC ,,,,,,,,, 111

2

211

1

1 +−++
.

We refer to a group as unresolved if the group contains
more than one class or phases of classes in the group are
undecided. If all groups are resolved, a unique ordering
will be obtained and the algorithm will terminate. The goal
thus is to resolve all unresolved groups. Let
Gj={Cj,Cj+1,…,Cl} be the first unresolved group. Since all
groups G1,G2,…,Gj-1 have been resolved, (i.e., they contain
a single class with a decided phase), the ordering of
classes up to Gj-1 is known. (The case when G1 is
unresolved is discussed at the end of next paragraph.) Now
the 2nd-signatures are used to specify the ordering inside
the unresolved groups starting with Gj. Since G1 is
resolved, G1={C1}, the 2nd-signatures with respect to C1
and Ci for j ≤ i ≤ l can be used for phase assignment (if
needed) and ordering of classes Cj,Cj+1,…,Cl (this step is
referred to as iteration 1.)
If phases of classes Ci in Gj are undecided, the 2nd-

Algorithm compute_Cf (f(X))
Input: A Boolean function f(X)
Output: The canonical form f(X) and CP
transformations Cf.
using the 0th‐signature perform output phase
assignment;
using the 1st‐signatures

if ||||
ii xx ff > assign positive phase to xi;

else if ||||
ii xx ff < assign negative phase to xi;

else mark the phase of xi as undecided.
create symmetry classes and order the classes such
that: ||||||

21 mCCC fff ≥≥≥ L

group classes to groups G1,G2,…,Gk such that all
classes inside a group have the same 1st‐signature:
recursive_resolve(G1,G2,…,Gk;Cf) ;
set the canonical form: F(X)=f(TX) where T∈Cf;

7 | P a g e

signatures ||
1 iCCf and ||

1 iCCf are compared to decide the

phase for Ci. In case of equality of the 2nd-signatures, the
phase of Ci remains undecided. Next, new values of 2nd-
signatures ||

1 iCCf after phase assignment are used to order

classes Cj,Cj+1,…,Cl and later regroup these classes.
Subsequently, Gj is split into smaller groups such that
inside each group the 2nd-signatures are equal. The same
procedure (phase assignment, ordering and regrouping
based on 2nd-signatures) is applied to all other unresolved
groups. Finally, the indices of new groups are properly
updated. If after these steps, there still exists some
unresolved group, Gl, a similar procedure will be applied
based on the 2nd-signatures with respect to C2 and Ci∈Gl
(this is named iteration 2.) If needed, iterations

1,,4,3 −jK will be performed. If, at iteration j, there
still exists some unresolved groups and Gj itself is also
unresolved, the procedure described below will be used.
This case includes the case where G1 is unresolved.
At this point, groups G1,G2,…,Gj-1 are resolved. However,
group Gj={Cj,Cj+1,…,Cl} are not resolved (since the 1st and
2nd signature have not made them distinct.) There are l–j+1
ways (for j≤i≤l) to split Gj into two groups: new Gj={Ci}
and new Gj+1= {Cj,…,Ci–1,Ci+1,…,Cl}. If the phase of Ci is
undecided, then there will be two ways to resolve the new
group, Gj. Consequently, there are r=l–j+1 ways (or in the
worst case r=2(l–j+1) ways) to specify and resolve the
new group, Gj. All these r cases need to be tracked, since it
is unknown which one(s) will result in a CP
transformation. For each case, the 2nd-signatures, ||

ijCCf ,

are used to first order classes inside the unresolved groups
among Gj+1,Gj+2,…,Gm and then split them based on the
outcome of ordering. This process continues for all r cases
recursively (cf. the recursive_resolve algorithm) until all
groups are resolved. Each case corresponds to a different
input phase assignment and re-indexing. Any input phase
assignment and re-indexing transforms X=(x1,x2,…,xn) to
Y=(y1,y2,…,yn) where F(Y) = f(X). Each such relation can
be described by an NP transformation T where X = TY.
The r cases result in transformations T1,T2,…,Ts where in
general s≥r because each case returns more than one
transformation as a result of the recursion process.
Because of the way the CP transformations are
constructed, they will be among {T1,T2,…,Ts} (modulo
simple symmetries). Hence, by using the 1st and 2nd
signatures, we have limited the search for a CP
transformation among all 2nn! transformations of Γn to
that of searching among {T1,T2,…,Ts}, which is a
significantly smaller space than Γn.
CP transformations among {T1,T2,…,Ts} are identified
based on the fact that Ti is a CP transformation if and only
if f(TiX) ≥ f(TjX) for 1≤j≤s. This task requires repeated
comparison between f(TiX) and f(TjX). The comparison is
done based on the signature vectors. However, before
using the signature vectors, the possibility of equivalency
of Ti and Tj should be considered, i.e., first the relation
f(TiX) = f(TjX) should be checked since in case of equality
their signature vectors will also be equal. Because of the
manner by which the NP transformations T1,T2,…,Ts are

obtained, they all have the same set of 0th and 1st
signatures. In fact, some of their 2nd signatures are also
equal. Hence, to avoid redundancy in comparing f(TiX) and
f(TjX), only signatures that have not already been
determined to be equal are generated and compared. Since
comparison is done based on lexicographic comparison of
signature vectors, signatures are generated one by one
based on their effectiveness. Only in case of equality,
subsequent signatures are generated and compared.
Experience shows that for nearly all functions, the 1st and
2nd signatures conclude the comparison of f(TiX) < f(TjX).

In this description of the algorithm, we did not discuss the
case where the output phase may not be decided by the 0th-
signature. In such a case, the following steps will have to
be performed for both output phases. Let’s assume that Cf
is the set of NP transformations returned by the algorithm
for f and C’f is returned for f . If)'()(XTfTXf > (where
T∈Cf and T’∈C’f), then the output phase is positive; if

)'()(XTfTXf < , then the output phase is negative; and in
case equality, both phases can result in the canonical form,
i.e.,)'()()(XTfTXfXF == and the set of CP
transformations is set to Cf ∪C’f.
The algorithm returns Cf which in general may contain
more than one NP transformations. Based on the members

Algorithm recursive_resolve (G1,G2,…,Gk;Cf)
Input: Ordered groups (G1,G2,…,Gk)
Output: The CP transformations Cf
i=1; Cf ={};
while (i≤m) { // m is the number of classes
 if (Gi is resolved) { // Gi ={Ci}
 for (all unresolved groups Gj){
 use signatures ||

liCCf (Cl∈Gj) to assign phase,

 order and split Gj;
 update indices of groups and classes;
 }
 i=i+1;
 } else { // Gi={Ci,Ci+1,…,Cl} is not resolved
 // for space limitation assume the phase of
 // Gi={Ci,Ci+1,…,Cl}is decided
 for (j=i; j≤l; j++) {
 split Gi to groups {Cj} and {Ci,…,Cj–1,Cj+1,…,Cl};
 update indices of groups and classes
 (G1,G2,…,Gk,Gk+1);
 recursive_resolve (G1,G2,…,Gk,Gk+1;CfTEMP) ;
 if (Cf={} or f(TTEMPX)>f(TX)){
 //T∈Cf, TTEMP∈CfTEMP
 Cf=CfTEMP;
 } else if (f(TTEMPX)=f(TX)) {
 Cf=Cf ∪CfTEMP;
 }
 }
 return;
 }
} //At this point there are m resolved groups
T = Transformation obtained by phase assignment and
 ordering;
Cf={T};
return;

8 | P a g e

of Cf, SP transformations (other than those corresponding
to simple symmetries) are detected, i.e., if T and T’ are CP
transformations, then T’T–1 will be an SP transformation.
Equivalently, for CP transformation T, CfT–1⊂Sf. Other
members of Sf may be generated by composing NP
transformation of CfT–1 with simple symmetry
transformations. Composition means construction of every
transformation that can be generated by members of T–1Cf
and symmetry transformations. This step may require
repeated compositions.
Example 4: Consider the multiplexer function

465365265165)(xxxxxxxxxxxxXf +++= . The 0th signature
of the function and its complement are equal, i.e.,

32|||| == ff ; hence, in this step the output phase cannot
be determined. We must consider both phases. First we
choose the positive phase. In this function, there is no
symmetry between variables, i.e., each symmetry class
contains only one variable. After doing input phase
assignment, ordering and grouping classes (in this case,
variables), two groups G1 and G2 are
created: },,,{ 43211 xxxxG = and

},{ 652 xxG = where

40||||||||
4321
==== xxxx ffff and 32||||

65
== xx ff .

For members in G2, the phase is undecided since
32||||||||

6655
==== xxxx ffff whereas for G1 the phase is

decided where the 1st-signature is: 40|| =
ixf . Both groups

G1 and G2 are unresolved. Group G1 can be split in four
ways:
1: },,{},{ 4321 xxxx 2: },,{},{ 4312 xxxx

3: },,{},{ 4213 xxxx 4: },,{},{ 3214 xxxx
The algorithm keeps track of all these cases. Let’s focus
on one of the cases e.g., case 1 which results in the
following grouping:

},{},,,{},{ 65243211 xxGxxxGx == . Now
we try to resolve G1 and G2. Since

48||||||
413121

=== xxxxxx fff , G1 cannot be

resolved at this step. As for G2,
48||32||

5151
=<= xxxx ff and

48||32||
6161
=<= xxxx ff which implies that negative

phases should be assigned to x5 and x6. However,
||||

6151 xxxx ff = which means that G2 can not be

resolved further, i.e., the overall grouping thus far is:
},{},,,{},{ 65243211 xxGxxxGx == .

There are three ways to resolve G1. Following one of these
cases, for example, will result in

6543121 ,},,{,, xxxxGxx = since

48||||
4232
== xxxx ff and

32||48||
6252
=>= xxxx ff which results in

),,,,,(65432112 xxxxxxY = because

32||||
5453
== xxxx ff and 32||48||

6463
=>= xxxx ff . The

resulting Y12 corresponds to a transformations T12 where X

= T12Y12. Indices 1 and 2 in T12 indicate the decisions that
have been made for splitting G1 to obtain this
transformation T12. Had we chosen x3 instead of x2, we
would have arrived at),,,,,(56423113 xxxxxxY =
(and T13 from X = T13Y13). However, choosing x4 (instead
of x2) does not immediately resolve G1 and a further step
to decide between x2 and x3 must be performed, resulting
in),,,,,(653241142 xxxxxxY = and

),,,,,(562341143 xxxxxxY = and subsequently T142 and T143.
It turns out that f(T142X) = f(T143X), which means that we
must keep both T142 and T143 transformations at this step.
However, f(T12X) = f(T13X) ≠ f(T142X) which means that
we should either keep T142 and T143 or keep T12 and T13. To
make this decision signature vectors of f(T12X) and f(T142X)
need to be compared. All their 0th and 1st signatures and
most (but not all) of their 2nd signatures are equal. Hence,
to decide between T12 and T142 we first compare the
remaining 2nd signatures of f(T12X) and f(T142X). Since

32||48||
6452
=>= xxxx ff is the first inequality that

breaks the tie, f(T12X)>f(T142X) which shows that only T12
and T13 should be kept. These transformations are the
result of selecting x1 to spilt G1 at the beginning. If we
choose x2, x3 or x4 we will obtain transformations T21, T24,
T31, T34, T42 and T43. It turns out that f(T12X)= f(T13X) =
f(T21X) = f(T24X) = f(T31X) = f(T34X) = f(T42X) = f(T43X),
which means that all these 8 transformations are maximal.
We obtained these transformations by assuming positive
phase for the output. If we choose the negative phase and
follow the same steps, we will obtain 8 other
transformations. It turns out that these new transformations
along with output negation convert f to the same function
as previous transformations i.e., there are 16 CP
transformations and the canonical form
is 465365265165)(xxxxxxxxxxxxXF +++= . These 16 CP
transformations result in 16 SP transformations.

IV. EXPERIMENTAL RESULTS
The technique presented above was implemented and ran
on a computer system with a 1.7GHz Intel Xeon processor
and 1GB of memory. To evaluate the effectiveness of the
proposed algorithm, canonical forms are computed for all
cells in a large cell library, containing a large number of
complex cells with up to 20 inputs. We started with a
standard cell library and augmented it with a large number
of pseudo-randomly generated logic cells with different
input counts. These pseudo-random functions were
generated from different single output clusters taken from
the subject graphs created for MCNC benchmark circuits.
Table 1 shows the worst-case and average run-times
required for computing the canonical form in terms of the
number of inputs; i.e., the second and third columns are
the worst-case and average runtimes for all n-input cells.
The fourth and fifth columns present results (after scaling
to match CPU speeds) provided in references [8] and [10].
The run-times in this table are in microseconds and
include data for cells with more than 3 inputs. As an
example, the worst-case 20-input cell was a multiplexer
with four select inputs for which the proposed algorithm

9 | P a g e

took 240 microseconds to compute its canonical form. Our
results show a major improvement in run-time over [8].
Our runtimes are similar to those of [10] for circuits of
nine or fewer inputs. Reference [10] performs better on
some small benchmarks. Note however that the authors of
[10] do not provide results for circuits with larger number
of inputs due to the space complexity of their method.
(This limitation is because of using hash table to store pre-
computed results).
For nearly all of the cells in the library, the canonical
forms were computed by using only the 0th, 1st and 2nd-
signatures. The number of 0th, 1st and 2nd-signatures
combined is (1+n)(1+n/2). Only one of the cells required
the use of a single 3rd-signature. In spite of this, clearly for
some Boolean functions, it may become necessary to
generate all of the high order signatures. In this worst-case
scenario, the number of generated signatures will be the
power set of n which is exponential in n. However, the
algorithm described above is complete and capable of
handling functions that may require the use of higher order
signatures for computing the canonical form. The function
that required the use of the 3rd signatures was a multiplexer
where one of the select inputs was the output of an XOR
function. A simplified version of such a function is

421321)()()(xxxxxxXF ⊕+⊕= .
One of the advantages of the proposed algorithm is
identifying all symmetry relations for the given function.
The runtime of the algorithm for any function has a direct
relation with the number of non-simple symmetry relations
of the function. More precisely, the higher the number of
non-simple SP transformations, the higher the runtime.
Table 1. Runtimes for computing canonical forms and

number of non-simple SP transformations.
Number of
Inputs

Average
run‐time

Worst‐case
run‐time

Ref [8]
(scaled)

Ref [10]
(Scaled)

Size of
Sf

3 < 1 < 1 4.62 ‐ 4
4 < 1 < 1 7.41 0.2 6
5 1 1 26.02 0.63 8
6 2 3 39.13 1.09 16

7 3 5 147.6 1.74 18

8 4 8 – 3.57 24

9 6 14 – 7.05 32

10 8 21 – – 64

11 14 30 – – 128

12 20 48 – – 144

13 23 61 – – 162

14 33 80 – – 216

15 37 105 – – 288

16 44 115 – – 324

17 56 140 – – 384

18 67 165 – – 512

19 80 200 – – 576

20 100 240 – – 768
The sixth column of Table 1 reports the number of non-
simple SP transformations for functions that correspond to
the worst-case runtimes in the previous experiment. Note
that the number of non-simple SP transformations is equal

to the number of non-trivial CP transformations i.e., |Cf |.
Despite major advances in the algorithms for Boolean
matching (including this work) the time and space
complexities of all these algorithms remain exponential in
the worst case. In our approach the space complexity is
determined by the size of the BDD used to represent the
function (which is in the worst case exponential in the
number of inputs of the Boolean function.) The worst-case
time complexity is exponential in the number of inputs
since we may have to generate all signatures of a Boolean
function ranging from the 0th to the nth order. However,
judging by the experimental results, since the BDD sizes
remain reasonable and since we have never encountered a
case that required more than a 3rd order signature, the time
complexity remains polynomial for the attempted
benchmarks and many randomly generated circuits.

V. CONCLUSION
This paper addressed the general Boolean matching
problem in which both permutation and complementation
of inputs and output are considered. A new efficient and
compact canonical form was defined and an effective
algorithm for computing the proposed canonical form was
presented. The compactness and average efficiency of the
accompanying computational procedures enables this
algorithm to be applicable to a wide range of circuits
without large number of inputs. Experimental results
demonstrated the efficacy of the proposed approach.

REFERENCES
[1] L. Benini and G. De Micheli, “A survey of Boolean
matching techniques for library binding,” ACM Trans. Design
Automation of Electronic Systems, vol. 2, no. 3, pp. 193–226,
July 1997.
[2] M. A. Harrison, Introduction to Switching and Automata
Theory, McGraw-Hill, 1965.
[3] J. R. Burch and D. E. Long, “Efficient Boolean function
matching,” in Proc. Int’l Conf. on Computer-Aided Design,
pp. 408–411, Nov. 1992.
[4] Q. Wu, C. Y. R. Chen, and J. M. Acken, “Efficient
Boolean matching algorithm for cell libraries,” Proc. IEEE
Int’l Conf. on Computer Design, pp. 36–39, Oct. 1994.
[5] D. Debnath and T. Sasao, “Fast Boolean matching under
permutation using representative,” Proc. ASP Design
Automation Conf., pp. 359–362, Jan. 1999.
[6] J. Ciric and C. Sechen, “Efficient canonical form for
Boolean matching of complex functions in large libraries,”
IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems, vol. 22, no. 5, pp. 535–544, May 2003.
[7] U. Hinsberger and R. Kolla, “Boolean matching for large
libraries,” Proc. Design Automation Conf., pp. 206–211,
1998.
[8] D. Debnath and T. Sasao, “Efficient computation of
canonical form for Boolean matching in large libraries,” Proc.
ASP Design Automation Conf., pp. 591–596, Jan. 2004.
[9] J. Mohnke and S. Malik, “Permutation and phase
independent Boolean comparison,” Integration - the VLSI
journal, 16: pp. 109-129, 1993.
[10] D. Chai and A. Kuehlmann, “Building a Better Boolean
Matcher and Symmetry Detector,” Proc. Design Automation
and Test in Europe, March 2006.
[11] P. Molitor and J. Mohnke. Equivalence Checking of
Digital Circuits. Kluwer Academic Publishers 2004.

10 | P a g e

[12] D.M.Miller, "A Spectral Method for Boolean Function
Matching", Proc. European Design and Test Conference, pp.
602, 1996.
[13] E.M. Clarke et al., "Spectral Transforms for Large
Boolean Functions with Applications to Technology
Mapping", Proc. Design Automation Conference, pp. 54-60,
1993.
[14] C. E. Shannon, “A symbolic analysis of relay and
switching circuits,” American Institute of Electrical Engineers
Trans., 57:713-723, 1938.
[15] V. N. Kravets and K. A. Sakallah, “Constructive library-
aware synthesis using symmetries,” Proc. Design Automation
and Test in Europe, pp. 208-213, March 2000.
[16] K. S. Chung and C. L. Liu, “Local transformation
techniques for multi-level logic circuits utilizing circuit
symmetries for power reduction,” Proc. Int’l Symp. on Low
Power Electronics and Design, pp. 215–220, August 1998.
[17] S. Panda, F. Somenzi, and B. F. Plessier, “Symmetry
detection and dynamic variable ordering of decision
diagrams,” Proc. Int’l Conference on Computer-Aided
Design, pp. 628–631, November 1994.

[18] C. W. Chang, C. K. Cheng, P. R. Suaris and M. Marek-
Sadowska, "Fast Post-placement Optimization Using
Functional Symmetries," IEEE Trans. on Computer-Aided
Design, pp. 102-118, Jan. 2004.
[19] K. H. Chang, I. L. Markov and V. Bertacco, "Post-
Placement Rewiring and Rebuffering by Exhaustive Search
For Functional Symmetries," Proc. Int’l Conference on
Computer-Aided Design (ICCAD), 2005, pp. 56-63.
[20] D. Möller, J. Mohnke, and M. Weber, “Detection of
symmetry of Boolean functions represented by ROBDDs,”
Proc. Int’l Conference on Computer Aided Design 1993,
pp.680-684.
[21] A. Abdollahi and M. Pedram, "A New Canonical Form
for Fast Boolean Matching in Logic Synthesis and
Verification," Proc. Design Automation Conference, 2005.
[22] B. D. McKay, "Practical graph isomorphism,"
Congressus Numerantium, vol. 30, pp. 45-87, 1981.
[23] P. T. Darga, M. H. Liffiton, K. A. Sakallah, and I. L.
Markov, "Exploiting structure in symmetry detection for
CNF," Proc. Design Automation Conference,2004,pp.530-
534.

