
436 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 5, NO. 4, DECEMBER 1997

Energy Minimization Using
Multiple Supply Voltages

Jui-Ming Chang and Massoud Pedram

Abstract—We present a dynamic programming technique for
solving the multiple supply voltage scheduling problem in both
nonpipelined and functionally pipelined data-paths. The sched-
uling problem refers to the assignment of a supply voltage level
(selected from a fixed and known number of voltage levels) to
each operation in a data flow graph so as to minimize the average
energy consumption for given computation time or throughput
constraints or both. The energy model is accurate and accounts
for the input pattern dependencies, re-convergent fanout induced
dependencies, and the energy cost of level shifters. Experimental
results show that using three supply voltage levels on a number of
standard benchmarks, an average energy saving of 40.19% (with
a computation time constraint of 1.5 times the critical path delay)
can be obtained compared to using a single supply voltage level.

Index Terms—Dynamic programming, energy minimization,
functional pipelining, multiple supply voltages, scheduling.

I. INTRODUCTION

ONE driving factor behind the push for low power design
is the growing class of personal computing devices as

well as wireless communications and imaging systems that
demand high-speed computations and complex functionalities
with low power consumption. Another driving factor is that
excessive power consumption has become a limiting factor in
integrating more transistors on a single chip. Unless power
consumption is dramatically reduced, the resulting heat will
limit the feasible packing and performance of VLSI circuits
and systems.

The most effective way to reduce power consumption is to
lower the supply voltage level for a circuit. Reducing the sup-
ply voltage however increases the circuit delay. Chandraskan
et al. [1] compensate for the increased delay by shortening
critical paths in the data-path using behavioral transformations
such as parallelization or pipelining. The resulting circuit
consumes lower average power while meeting the global
throughput constraint at the cost of increased circuit area.

More recently, the use of multiple supply voltages on the
chip is attracting attention. This has the advantage of allowing
modules on the critical paths to use the highest voltage level
(thus meeting the required timing constraints) while allowing
modules on noncritical paths to use lower voltages (thus
reducing the energy consumption). This scheme tends to result
in smaller area overhead compared to parallel architectures.

Manuscript received September 8, 1996; revised May 15, 1997. This work
was supported by ARPA under Contract F33615-95-C1627 and SRC under
Contract 97-DJ-559.

The authors are with the Department of Electrical Engineering-Systems,
University of Southern California, Los Angeles, CA 90089 USA.

Publisher Item Identifier S 1063-8210(97)09203-2.

There are, however, a number of practical problems that
must be overcome before use of multiple supply voltage
becomes prevalent. These problems include routing of multiple
supply voltage lines, area/delay overhead of required level
shifters, and lack of design tools and methodologies for
multiple supply voltages. The first issue is an important
concern which should be considered by any designer who
wants to use multiple supply voltages. That is, there is a trade-
off between lower energy dissipation and higher routing cost.
The remaining issues (that is, level shifter cost and lack of
tools) are addressed in this paper. That is, we will show that
the area/delay overhead of level shifters is relatively small and
will present an effective algorithm for using multiple supply
voltages during behavioral synthesis.

In this context, an important problem is to assign a supply
voltage level (selected from a finite and known number of
supply voltage levels) to each operation in a data flow graph
(DFG) and schedule various operations so as to minimize
the energy consumption under given timing constraints. We
will refer to this problem as themultiple-voltage scheduling
problem or the MVS problem for short.

In this paper, we tackle the problem in its general form. We
will show that the MVS problem is NP-hard even when only
two points exist on the energy-delay curve for each module
(these curves may be different from one module to another),
and then propose a dynamic programming approach for solv-
ing the problem. This algorithm which has pseudo-polynomial
complexity (cf., Section IV-C) produces optimal results for
trees, but is suboptimal for general directed acyclic graphs. The
dynamic programming technique is then generalized to handle
functionally pipelineddesigns. This is the first time that the use
of multiple supply voltages in a functionally pipelined design
is considered. We will present a novelrevolving schedulefor
handling these designs.

The paper is organized as follows. In Section II, we summa-
rize related work. In Section III, we describe timing and energy
consumption models for nonpipelined designs. In Section IV,
we present a dynamic programming approach for solving the
multiple-voltage scheduling problem for the tree-like DFG’s
and then for general DFG’s. In Section V, we extend the ap-
proach to functionally pipelined designs. Experimental results
and concluding remarks are provided in Sections VI and VII.

II. RELATED PROBLEMS

The multiple-voltage scheduling problem (MVS) as de-
scribed above is closely related to thecircuit implementation
problemas defined in [2]. The latter problem is to minimize the

1063–8210/97$10.00 1997 IEEE

CHANG AND PEDRAM: ENERGY MINIMIZATION USING SUPPLY VOLTAGES 437

total gate area in a circuit by selecting a gate implementation
for each circuit node while meeting a timing constraint. It
was shown in [2] that even under a fanout (load) independent
delay model, with two implementations per circuit node, equal
signal arrival times at inputs, and chain-like circuit structure,
the problem of finding a solution where circuit area and
signal arrival time is NP-complete. We will show (cf.,
Section IV) that the MVS problem for minimum energy is
also NP-complete.

Another similar problem is that of delay constrained tech-
nology mapping [3]–[5]. Our method for solving multiple
voltage scheduling is similar to the method used in [4], [5].
In these works, the authors use dynamic programming to
cover a subject graph by a library of pattern graphs with the
goal of minimizing area/power while satisfying given timing
constraints.

The MVS problem was tackled in [6] where the authors
proposed an algorithm for minimizing the energy consumption
of a nonpipelined design while meeting the computation
time constraint. The authors assume that delay versus supply
voltage curves for all modules in the design library are
given and propose an iterative improvement algorithm for
solving the problem. The approach is optimal for general
directed acyclic graphs. However, the authors make a number
of simplistic and rather unrealistic assumptions (e.g., the
assumption that the difference of squares of the consecutive
voltages on the delay versus voltage curve is fixed; the
independence of energy consumption of a module from data
activity at its inputs; identical latency vs. supply voltage
curves for all modules in the circuit including adders and
multipliers). The first assumption enables the authors to reduce
the problem of under given computation
time constraint where is the energy consumption of module

to where is the delay of module
for the corresponding voltage assignment. If the assumptions
made in [6] do not hold for a given problem instance, then
their proposed algorithm will produce a suboptimal solution
without any performance guarantee.

Usami and Horowitz [7] proposed a technique to reduce the
energy consumption in a circuit by making use of two supply
voltage levels. The idea is to operate gates on the critical paths
at the higher voltage level and the gates on the noncritical
path at the lower voltage level. In this manner, the energy
consumption is minimized without affecting the circuit speed.

Power profiler [8] primarily uses agenetic search algorithm
to solve the multiple voltage scheduling problem. Johnson and
Roy presented an ILP-based formulation for the multiple volt-
age scheduling problem for nonpipelined design in [9]. Both
algorithms have exponential worst case complexity and hence
the results are suboptimal for large problem instances where
computation time is bounded due to practical considerations.
In addition, they do not address conditional branches; nor do
they consider functional pipelining. Their energy models do
not support input data dependency.

In comparison to previous work, our algorithm is able to
find the minimal energy solution for tree-like DFG’s under
timing constraints, handles general DFG’s and functionally
pipelined designs, explicitly supports the conditional branches,

uses an energy model that takes different input data switching
activities into consideration, and has pseudo-polynomial time
complexity.

III. ENERGY-DELAY CURVES

We assume there are latches on the inputs of all modules to
synchronize the input arrival times, and no multiple module
activations per cycle occurred.

A. The Timing Model

Let -step denote a control step (clock cycle), the basic unit
of time used in the DFG in behavioral level. When the supply
voltage level of a module is lowered, the delay increases. For
a given length of a -step, an operation may thus become
a multicycle operation.

Let be the starting time of operation the output
arrival time of operation the execution time (delay)
of operation the length of a -step, then we have the
following:

where operation is a predecessor of operation.

B. The Energy Dissipation Model

We present in this section two computational models for
energy dissipation at behavioral level. Our optimization al-
gorithm is however independent of the specifics of these
energy models. More precisely, any energy macromodel whose
parameters depend on the input and/or output activity factors
can be used here. This includes for example, the power macro-
model reported in [10].

We assume that the dynamic energy dissipation in a func-
tional unit is given by this equation

(1)

where is the supply voltage of functional unit
and are the average switching activities on the first and
second input operands of , respectively, is a function of

and and in general may be nonlinear. We propose
two methods to calculate given the pairs

The first method is based on look-up table, that is, we store
energy dissipation values for various combinations
and interpolate to calculate the energy value for a given

combination which is not found in the table. This
method can achieve very high accuracy based on the number
of entries in the look-up table.

The second method is based on energy macro-modeling
using a linear equation with and as random variables.
More precisely, we use the least square fit to find a plane in the
three-dimensional (3-D) space that best fits the set of points

for each module . From the least
square fit, we obtain

(2)

438 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 5, NO. 4, DECEMBER 1997

TABLE I
ENERGY DISSIPATION OF DATA-PATH FUNCTIONAL UNITS

TABLE II
AVERAGE ENERGY OF A 16-BIT LEVEL SHIFTER

’s depend on the module type, the input data width,
the technology and logic style used, and the internal module
structure. We obtain the values for every module using
gate-level simulation and the least square fit. The accuracy of
the model can be improved by using more variables.

To validate our energy model, we present some results for
the set of data-path modules used in our library which are
implemented in a 1- technology (cf., Table I) using the two
methods presented above. Table I presents energy values in
at V when the input sequence has average activities of

(random data for one operand and biased
data for another operand). It is clear from these results that
the table look-up method (with 100 entries) remains accurate
over the range of value whereas the curve fitting method
becomes inaccurate for small.

We have also assumed that the range ofis such that
the major source of energy consumption is the capacitive
charging/discharging; that is, remains constant as
is scaled down. This may not be true when static standby
current becomes important at very low voltages.

With this macromodeling, we can calculate the energy
consumption of each module alternative under different supply
voltages and switching activities. Note that and are
calculated by using behavioral simulation of the given DFG
using the set of user-specified (application-dependent) input
vectors.

Let be the energy used by level shifterin the
circuit when its input changes once. The energy dissipation
(in in a 16-bit level shifter per voltage level transition is
given in Table II (all 16 bits are switching). The propagation
delay through a level shifter taken from [7] for typical load
value is less than (which makes it negligible compared to
the propagation delay through the modules) (cf., Table IV).
Note that at most one level shifter will be used after any
module. We can absorb the delay costs (1 ns) for level shifters
into the delay of the functional units they follow, because in
the module library, the minimum module delay is at least 20
times larger than the level shifter delay. Multiplexors will be
used to route data in for nonoverlapping operations that share
the same module sequentially. From Table I, we can also see

that the energy consumed in multiplexors is relatively small
compared to energy dissipation in adders and multipliers. In
any case, multiplexors are needed with or without multiple
supply voltages.

We assume (andenforce) that each module isactive only
when it is performing an operation, and is in thesleep mode
at all other times. The sleep mode can be achieved by clock
gating or use of flip-flops with enable/disable.

C. Tradeoff Curves

We calculate on each node of the DFG a delay function
(or delay curve) where each point on that curve relates the
accumulated energy consumed on the subtree rooted at that
node (or operation) and the output arrival time of the node
when a certain module (with certain supply voltage level
and hence delay) is used to perform that operation. Different
module alternatives for the same operation give rise to different
points on the delay curve. The accumulated energy is the sum
of energy consumed in all modules in that subtree (including
the root of that subtree) plus all energy consumed in the
necessary level shifters.

The delay function is therefore represented by a set of
ordered pairs of real positive number where a piecewise
linear function can be constructed which describes
the set of all possible energy-delay trade-off solutions.

Without loss of generality, we assume that for each module
in the library, the values [cf., (2)] are stored in a table like
Fig. 1(a). During dynamic programming, we have to calculate
the energy-delay trade-off points for each instance of the
module. At that time, the input operand activities
are known from a behavioral simulation of the DFG; the
information shown in Fig. 1(a) can be thus used to generate
the energy delay curve shown in Fig. 1(b) and (c) for any
given pair of . Points on the curve represent various
voltage assignment solutions with different tradeoffs between
the speed and energy.

We only keepnoninferior points on each curve. Point is
a noninferior point if and only if there does not exist a point

such that either or

IV. THE SCHEDULING ALGORITHM

We first describe scheduling of DFG’s which aretrees. The
goal here is to obtain a minimum energy solution that binds the
operations in DFG to modules in the library while satisfying
a computation time constraint.

It is a simple exercise to formulate this problem as an
integer linear programming problem (ILP). However, the ILP
formulation doesnot take advantage of theproblem structure
and is in general very difficult and inefficient to solve. Instead,
we use adynamic programmingapproach as described next.

A. Post-Order Traversal

A post-order traversal of the tree is performed, where for
each node and for each module alternative at a new
delay function is produced by appropriatelyadding the delay

CHANG AND PEDRAM: ENERGY MINIMIZATION USING SUPPLY VOLTAGES 439

(a)

(b) (c)

Fig. 1. Our module library using the second method in Section III-B for a 16-bit adder and the energy versus delay curves.

functions at the children of node. Adding must occur in the
common region among all delay functions in order to ensure
that the resulting merged function reflects feasible matches
at the children of . Note that the energy consumed inlevel
shiftersis computed during the postorder traversal by keeping
track of the voltages used in the current node and its children
(using Table II and switching activity information). The delay
function for successive module alternatives at the same node

are then merged by applying alower-bound mergeoperation
on the corresponding delay functions. See [11] for details of
operations.

The delay function addition and merging are performed
recursively until the root of the tree is reached. The resulting
function is saved in the tree at its corresponding node. Thus
each node of the tree will have an associated delay function.
The set of pairs corresponding to the composite delay
function at the root node defines a set of arrival time-energy
tradeoffs for the user to choose from.

B. Pre-Order Traversal

The user starts with the total computation time constraint
at the root of the tree and performs a pre-order traversal

to determine the specific point on each curve associated with
each node of the tree. The timing constraints of children at the
root are computed as where is the delay
of the module alternative for the root which satisfies arrival
time and has the minimum energy. This module se-
lection and timing constraint propagation technique is applied
recursively at all internal nodes during the pre-order traversal.

C. Complexity Analysis

Theorem IV.1:The MVS problem isNP-complete.
Proof: By restricting our DFG into a chain and allowing

only two implementations for each operation in the chain,
our problem is identical to the circuit implementation problem
which is known to be NP-complete [2].

Definition IV.1: Let be an instance of a computational
problem. Then is the problem size and is the
largest integer appearing in

Definition IV.2: An algorithm for a problem is pseudo-
polynomial if it solves any instance of in time bounded
by a polynomial in and

Let’s scale delay values for all modules under different
voltage assignments to become integers. Furthermore, let’s
denote the maximum computation time for a tree-like DFG
(using the worst-case integer delay values on any path) by

Clearly, is bounded from above by an integer
Let where is the number of nodes in the DFG.

The MVS problem is a number problem[12] because
there exists no polynomial such that is less than or equal
to . This implies that we can develop an algorithm for
solving with a pseudo-polynomial time complexity is
not NP-complete in the strong sense).

Theorem IV.2:Our dynamic programming algorithm pro-
vides a pseudo-polynomial time algorithm for exactly solving
the MVS problem for tree-like DFG’s.

Proof: The number of energy-delay points on each node
in the tree is bounded from above by. The algorithm thus
has a time complexity of Delay function merging and

440 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 5, NO. 4, DECEMBER 1997

Fig. 2. An example to show the revolving schedule.

adding can be done in polynomial time in the number of
points on the curves involved in the operations. Therefore,
our algorithm for solving the MVS problem runs in pseudo-
polynomial time because its time complexity is bounded above
by a polynomial function of and as defined above.

Corollary IV.1: If the tree is node-balanced (its height is
logarithmic in the number of its leaf nodes), then our dynamic
programming algorithm runs in polynomial time.

D. Extension to General DFG’s

The delay functions for nodes of ageneral DFG are
computed by a post-order traversal as was the case for a tree-
like DFG. The key question is how to add up the energy cost
of children of a node during the post-order step.

We have adopted a heuristic whereby the energy value of
a multiple fanout point is divided by its fanout count when
its is propagated upward in the DFG. This heuristic is also
adopted in technology mapping programs such as MIS [13] or
ad-mapper [4] and tends to produce good results.

General DFG’s containconditional branches. We use nodes
and to indicate the distribute and join nodes in order

to express the conditional branches. For eachand
pair (which serve assynchronization points), there were two
subgraphs which represent the “true” and “false” conditions,
respectively. We treat the two subgraphs as if they are two
simultaneous (parallel) subgraphs and apply dynamic program-
ming technique on each subgraph except for the following.
During the postorder traversal, when we come to anode,
we do not divide the cost of the subgraph rooted atby two
(in case of a single branch). Furthermore, when we come to a

node, we weight the cost of each branch by the probability
that the branch is taken and then add the weighted branch costs
to obtain the cost of the node.

E. Module Sharing After Scheduling

It is difficult to account for the possibility of module
sharing during dynamic programming. An attempt to consider
sharing during the module assignment and scheduling phase
will violate the principle of optimality that is the basis for
using dynamic programming. This is because the dynamic
programming cost at the root of a subtree cannot be determined
independently of the rest of the tree (which is not yet mapped),
so the optimal solution cannot be obtained by merging optimal
solutions for the corresponding subproblems.

Fig. 3. Revolving schedule for a simple DFG.

After scheduling is completed, a module allocation and
binding algorithm is applied whose goal is to exploit the
possibility for sharing modules among compatible operations.
This algorithm uses conventional techniques to detect opera-
tion compatibility and mutual exclusiveness of operations (as
in parallel branches).

We use a scheme similar to that of [14] for minimum energy
module binding using a max-cost network flow algorithm.
Details can be found in [15].

V. FUNCTIONALLY PIPELINED DATA-PATH

A. Background

In a functionally pipelined design, several instances of
the execution of a data flow graph are overlapped in time.
The time domain is discretized intotime steps(for a given
length of a time step). Unlike a structural pipelining, there
is no physical (but logical) stages in a functional pipeline.
Structural pipelining implies the use of pipelined modules,
such as four-stage pipelined multiplier. Both functional and
structural pipelining are aimed to increase the throughput of
computation.Latency is defined as the number of time
steps between two consecutive pipeline initiations. Acontrol
step or -step is a group of time steps that overlap in time
(cf., Fig. 3). For a given latency -step corresponds to
time steps where is an integer. We denote
the consecutive -steps in a pipeline initiation as aframe.
When the supply voltage level of a module is lowered, its
delay increases and the operation assigned to the module may
becomemulticycle. If the voltage is further lowered, for a
small pipeline initiation latency an operation may become
multiframe.

The computation time of a functionally pipelined
data-path is defined as the total time needed to process one
data sample. Normally, a functionally pipelined circuit has to
meet some throughput and/or computation time constraints.
Throughput constraint is often more important than the com-
putation time constraint in a functionally pipelined design.

Suppose we are given input samples to be processed by a
functionally pipelined data-path. Let be the computation

CHANG AND PEDRAM: ENERGY MINIMIZATION USING SUPPLY VOLTAGES 441

time and be the length of a-step. Then total time used is
equal to Let be the energy used
by all of the level shifters in the circuitper pipeline initiation
(or the energy used to process only one data sample) and
be the average energy used by all of the modules per pipeline
initiation. Then total energy used is and

(3)

In our problem, the latency, and are assumed to be
given. Therefore, when we minimize which is
the average totalenergyused by all modules and level shifters
per pipeline initiation, we are indeed minimizing the average
power dissipation.

An algorithm for performing scheduling and allocation
for functionally pipelined DFG’s is described in [16]. This
technique known as thefeasible schedulingdeals with single
cycle operations and operations that can be chained together
in one -step, but not multicycle or multiframe operations.

B. Handling Multiframe Operations

Our goal is to obtain a minimum energy functionally
pipelined data-path realization while meeting the global
throughput constraint (which is described by two parameters

and Suppose there is a module with delay equal
to where which is capable of performing an
operation in the DFG. To sustain the initiation rate of one
data sample per we use modules for operation

and usea revolving scheduleas described next.
Suppose that we have modules

for operation in the DFG. Our revolving schedule assigns
operation on the data sample (pipeline
initiation) to module at time step ,
assigns operation on the data sample to
module at time step , etc., where

Fig. 2 illustrates the result for and
.1

Theorem V.1:The revolving schedulingalgorithm assigns
the operation whose corresponding module delay is
where to modules without creating any
resource conflict while meeting the throughput constraint of

where is the latency of the functional pipeline.
In the following, we show that the revolving schedule is the

best possible schedule in terms of the number of the module
instances used.

Theorem V.2:For any module with delay where
is the theoretical lower bound on the number

of modules that have to be utilized in order to perform the
corresponding operation with the pipeline latency ofwithout
creating any resource conflict.

We next discuss how the dynamic programming approach
has to be modified for the functionally pipelined designs. We
consider three cases.

1All proofs can be found in [11].

1) Operation Delay is Larger than : As shown
before, here we have no choice but to use modules to
perform the operation without creating any resource conflict
while meeting the global throughput constraint. Recall that
each module is active only when it is performing an operation,
otherwise, it is in the sleep mode. In any time interval, given

and , the total number of operations is the same regardless
of the number of modules used to execute those operations.
The total energy consumption for processingdata samples
can be calculated as follows. Let the input vectors feeding
to a module be denoted by etc. Suppose
the corresponding operation becomes multiframe and thus we
need to duplicate the module to and . The input
sequence feeding to is etc., whereas that feeding
to is now etc. Obviously, the input activities for

and are different from that of . However, the
activities for and can still be calculated based
on behavioral simulation results as long as we know how the
data is multiplexed to either or This is known
before the dynamic programming step based on the delay
of and . Next, the energy dissipation of module
averaged over one time frame is calculated as thearithmetic
mean of the energy dissipations of and under
their respective input sequences. This is obviously valid only
if we guarantee to shut off or when they are
not in use. The area for module however increases by
a factor of

In Fig. 3 we show a very simple DFG with three operations
and . Suppose operations and were assigned

voltages during the scheduling step and the resulting delays for
tentative modules and are, and ,
respectively. Fig. 3 shows the result after using the revolving
schedule. represents operation performed in the pipeline
initiation 1, etc.

2) Operation Delay : We need to use exactly
one module to perform the operation. No other operation can
share the module. The energy cost of the operation is that of
the corresponding module per data value.

3) Operation Delay : We use one module per
operation, however, the module may be shared. We again
relegate the sharing issue to a post-processing phase where
the scheduling solution obtained by dynamic programming
approach is further modified to increase module sharing (thus
reducing area cost of the design).

C. Module Sharing After Scheduling

Our goal is to minimize the resources after the scheduling
has been done. The problem can be formulated as a minimal
coloring of a circular arc graph [17]. (For a functionally
pipelined data-path, a row in the resource allocation table is
a track which is circular in nature, i.e., theth -step in the
current frame comes before the first-step of next frame). The
exact solution is obtained by the algorithm proposed in [18]
which solves the register allocation problem in cyclic data flow
graphs by using a multicommodity flow formulation. Instead,
we have adopted a less expensive heuristic for doing module
sharing as described next.

442 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 5, NO. 4, DECEMBER 1997

(a) (b)

Fig. 4. A small example. (a) Result obtained by our algorithm Total Energy
Ea = 3875 pJ,Ea=E5 = 48:53%. (b) Result obtained by exhaustive search
Total EnergyEb = 3816 pJ,Eb=E5 = 47:79%.

TABLE III
MODULE LIBRARY USED FOR FIG. 4 (�1 = �2 = 0:5)

The resource conflicts in a functionally pipelined data-path
can be detected in a straight forward manner. See [11] for
details.

VI. EXPEIRMENTAL RESULTS

We first present the result obtained by our algorithm on a
small DAG (not a tree) and the result obtained by exhaustive
search. We assume four voltages are available and that all
primary inputs carry 5-V signals. The module library is shown
in Table III. The energy consumed by the level shifters is
shown in Table II. In this example, the length of a-step is 30
(ns) and a total computation time constraint (ns).
The results of dynamic programming algorithm and exhaustive
search are shown in Fig. 4. Note our new method can handle
a very large graph (more than thousands of nodes) in seconds,
but the exhaustive search (and the ILP formulation) which can
be used to obtain the true optimal solution can only handle a
small example (20 nodes) in a reasonable amount of time.
The two solutions obtained are different, but the results show
that our solution which is only 1% away from the optimal
solution.

In the remainder of this section, we present detailed re-
sults of our algorithm on a number of standard benchmarks
including a test DFG, AR filter, elliptical wave filter, discrete
cosine transform, robotic arm controller, second-order adaptive
transversal filter and differential equation solver.

We use the table look-up method presented in Section III-B
for energy calculation. Our module library is shown in
Table IV. For the sake of giving energy behavior of our
library modules, the energy values in this table are reported
for but as shown in Section III-B, we

TABLE IV
MODULE ENERGY (IN pJ) FOR �FFFUUU

1
= �FFFUUU

2
= 0:5

TABLE V
EXPERIMENTAL RESULTS ON VARIOUS BENCHMARKS. y: CORRESPONDS TO

THE CRITICAL PATH DELAY OF THE DFG. tc = 30 ns AND L = 3

calculate the energy values for any other pairs as they
become necessary.

Note that this table, for example, shows that we have five
16 implementations, two at 5.0 V and three at lower

supply voltages. Difference between the two which operate
at 5 V is their architectures (parallel multiplier versus Wallace
tree multiplier).

Our experimental results are shown in Table V. In this
table, is the energy dissipation corresponding to the supply
voltage of 5 volt. is the average energy obtained when the
libraries contain modules with {5, 3.3, 2.4 V} voltage levels.2

The columns corresponding to are the percentage
of energy consumed in level shifters over the total energy.
The results show that although the power consumed in level
shifters is not negligible, it is not large either. Note that we

2In [11], we also report results obtained by using only two or four supply
voltage levels.

CHANG AND PEDRAM: ENERGY MINIMIZATION USING SUPPLY VOLTAGES 443

can delete level shifters for step-down voltage conversions as
described in [7]. In our experiments, however we inserted the
level shifters for both step-up and step-down conversions.

Table V shows that an average energy saving of 3.88, 40.19
and 64.8% is achieved when using 3 supply voltage levels with
total computation time set to (the longest path
delay in the DFG), 1.5 and 2 .

Energy saving for is very much circuit-
dependent. That is, the energy saving is higher in circuits
where the number of noncritical nodes is large. For the
AR filter circuit, ratio is as low as 0.85 while for
the FDCT circuit, this ratio is 1. Energy saving potential
increases substantially when e.g., ratio
for goes down to 0.60 and 0.57 for the AR
filter and FDCT circuits, respectively.

In the functionally pipelined case, we can achieve lower
average energy for a given throughput constraint (which is
described by two parameters and by using a larger
computation time because larger will result in a solution
that uses lower voltages and thereby lower average energy.
Note that the throughput of the functional pipeline remains
the same. However, this causes more operations to become
multicycle or multiframe operations which will increase the
number of modules used to achieve the same throughput
constraint. Thus the computation time constraint indirectly
controls the chip area.

VII. CONCLUSION

We presented a dynamic programming approach for assign-
ing voltage levels to the modules in nonpipelining and func-
tionally pipelined data-paths. The average power consumption
can be reduced by using a single lowered supply voltage.
If the computation time constraint is violated with only a
single lower supply voltage, then pipelining or parallelism on
whole or part of the circuit to recover performance has to
be used. Although this is one way of trading the chip area for
power, the area penalty is generally much higher. With a given
computation time constraint, when multiple voltages are used,
our algorithm will lower the supply voltages of operations
which are not on the critical path while keeping the supply
voltages of operations on the critical path at a maximum. The
computation time constraint is thus achieved at lower area
overhead.

The use of modules for a multiframe operation
was necessary to maintain the throughput while reducing the
average energy consumption in the data-path. This, however,
increases the controller and multiplexor cost. The multiplexor
cost can be easily obtained from Table I. An energy cost model
for controller can be developed as a function of the total
number of functional units used in the circuit. For example,
by assuming that the energy cost of the controller scales with
the of the number of modules of a given type used in the
circuit. Therefore, during the post-order traversal, we can add
a term reflecting the extra energy consumed in the controller

when using modules to implement an operation. Thus
the accumulated energy consumed in each node in the DFG
will include the energy consumed in the controller.

REFERENCES

[1] A. Chandrakasan, M. Potkonjak, J. Rabaey, and R. W. Brodersen,
“HYPER-LP: A system for power minimization using architectural
transformations,” inProc. IEEE Int. Conf. Computer-Aided Design,
1992.

[2] W.-N. Li, A. Lim, P. Agrawal, and S. Sahni, “On the circuit imple-
mentation problem,” inProc. IEEE-ACM Design Automation Conf.,
1992.

[3] H. Toutai, W. Moon, R. Brayton, and A. Wang, “Performance-oriented
technology mapping,” inProc. M.I.T. Conf. Adv. Res. VLSI, 1990.

[4] K. Chaudhary and M. Pedram, “Computing the area versus delay
trade-off curves in technology mapping,”IEEE Trans. Computer-Aided
Design, vol. 14, Dec. 1995.

[5] C.-Y. Tsui, M. Pedram, and A. Despain, “Power efficient technology
decomposition and mapping under and extended power consumption
model,” IEEE Trans Computer-Aided Design, vol. 13, Sept. 1994.

[6] S. Raje and M. Sarrafzadeh, “Variable voltage scheduling,” inProc. Int.
Workshop Low Power Design, 1995.

[7] K. Usami and M. Horowitz, “Clustered voltage scaling technique for
low-power design,” inProc. Int. Workshop Low Power Design, 1995.

[8] R. Martin and J. Knight, “Power profiler: Optimizing ASIC’s power
consumption at the behavioral level,” inProc. IEEE–ACM Design
Automat. Conf., 1995.

[9] M. Johnson and K. Roy, “Low-power data-path scheduling under
resource,” inProc. IEEE Int. Conf. Computer Design, 1996.

[10] P. Landman and J. Rabaey, “Black-box capacitance models for archi-
tectural power analysis,” inProc. Int. Workshop Low Power Design,
1994.

[11] J.-M. Chang and M. Pedram, “How to minimize energy using multiple
supply voltages,” Univ. of Southern California, Los Angeles, Tech. Rep.
CENG 96-13, 1996.

[12] M. Garey and D. Johnson,Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York: W. H. Freeman, 1979.

[13] E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli, and
A. Wang, “Technology mapping in MIS,” inProc. IEEE Int. Conf.
Computer-Aided Design, 1987, pp. 116–119.

[14] J.-M. Chang and M. Pedram, “Low power register allocation and
binding,” in Proc. IEEE-ACM Design Automat. Conf., 1995.

[15] , “Power efficient register assignment,” Univ. of Southern Cali-
fornia, Los Angeles, Tech. Rep. CENG 95-03, 1995.

[16] N. Park and A. Parker, “Sehwa: A software package for synthesis
of pipelines from behavioral specifications,”IEEE Trans. on Compter-
Aided Design, vol. 7, Mar. 1988.

[17] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs. New
York: Academic, 1980.

[18] L. Stok, “Architectural synthesis and optimization of digital systems,”
Ph.D. dissertation, Eindhoven Univ. of Technol., The Netherlands, 1991.

Jui-Ming Chang received the B.S. degree in elec-
trical engineering from National Taiwan University,
Taiwan, in 1989 and the M.S. degree in computer
engineering from University of Southern California
(USC), Los Angeles. His major was VLSI CAD.
He is currently working towards the Ph.D. degree
candidate at USC.

His research interests include CAD of VLSI cir-
cuits (specializing in behavioral and system level
synthesis of VLSI systems targeting low power),
discrete, and combinatorial optimization.

Massoud Pedramfor photograph and biography, see this issue, p. 351.

